首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lines of evidence are presented which indicate that rat liver S-adenosylhomocysteinase consists of four identical or nearly identical subunits. Cross-linking of the enzyme with dimethyl suberimidate followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis yields four distinct protein bands with molecular weights of 47,000, 93,000, 145,000, and 190,000. The molecular weight of the largest protein is in excellent agreement with that of the native enzyme. Carboxypeptidase A liberates 4 mol of COOH-terminal tyrosine/mol of enzyme, and the number of arginine-containing peptides in a tryptic digest of the enzyme is one-fourth of that arginine residues present in the enzyme. The enzyme reversibly binds 4 mol of the substrate adenosine in a noninteracting manner, and the binding is associated with the reduction of 3.2 mol of enzyme-bound NAD+. However, in the presence of dithiothreitol, the same compound causes a time-dependent irreversible loss of enzyme activity concomitant with the formation of 3.6 mol of enzyme-bound NADH/mol of enzyme. Studies with adenine-labeled adenosine shows that radioactivity corresponding to 3.8 mol of substrate is tightly bound to the inactivated enzyme. Since the inactivation is apparently the consequence of reaction of dithiothreitol with an enzyme-bound intermediate as revealed by the kinetics of inactivation, these results support the conclusion that the four subunits of rat liver S-adenosylhomocysteinase are functionally equivalent.  相似文献   

2.
The aggregation and dissociation behavior of bovine alpha-crystallin as well as the folding and unfolding of its subunits were investigated by equilibrium studies using tryptophan fluorescence measurements and two isoelectric focusing techniques, viz. isoelectric focusing across a urea gradient and isoelectric focusing in two dimensions with different concentrations of urea. It was found that the alpha B chains lose their ability to aggregate and start unfolding at a lower concentration of urea than the alpha A chains. Equilibrium intermediates were found upon unfolding or refolding of alpha A subunits, which can be explained by a two-domain organization of these molecules.  相似文献   

3.
We have sequenced rabbit cDNAs that encode one isoform of the alpha subunit and two isoforms of the beta subunit of phosphorylase kinase, in addition to the single isoform from fast skeletal muscle that has been characterized to date for each subunit. All these isoforms are generated by alternative RNA splicing. The alpha subunit sequence obtained from slow skeletal muscle (soleus) is characterized by an internal deletion of 59 amino acids. This deletion is predominant in mRNA from slow muscle, heart, and uterus and accounts for the smaller alpha subunit variant (alpha') characteristic of phosphorylase kinase purified from slow muscle and heart. The beta subunit mRNA can be differentially spliced at two sites. In all tissues (except skeletal muscle) that were analyzed, an internal segment encoding 28 amino acids of the muscle sequence is replaced by a homologous sequence of identical length, presumably through the use of mutually exclusive exons. In brain and some other tissues, the deduced N-terminal sequence of the beta subunit is also changed. This is achieved by an insertion into the mRNA sequence that interrupts the initial reading frame after 25 codons and starts a new reading frame, encoding a different N terminus of 18 amino acids. This modification probably affects the major regulatory phosphorylation site of the beta subunit.  相似文献   

4.
A and B constituent subunits associated in lens alpha-crystallin were found to interact with added B chains forming alpha-neoprotein molecules with lower A to B chain ratios than 2 A to 1 B in alpha-crystallin. Addition of 1% excess of B chains to the one in alpha-crystallin, which resulted in a ratio of 1.98 A to 1 B in the mixture, caused a change of quaternary structure in 30% of alpha-crystallin molecules within 18 h. At a ratio of 1.86 A to 1 B, all alpha-crystallin molecules were affected at this time. A maximum number of 495 B chains was found to form an association with 1 A chain, initially bound in alpha-crystallin. Such a high number may indicate that the reaction involves monomeric A chains binding aggregated macromolecules of B chains. It is in such form that B chains occur as macromolecules with an average molecular weight of 0.7 X 10(6) in aqueous solution. The alpha-neoprotein molecules selected for studies in this report had A to B chain ratios of 1.75:1, 1:1, and 0.2:1. Each behaved in immunodiffusion tests like single molecular entities. Antigenic determinants located on A as well as on B chains associated with each other in alpha-crystallin were found to be identical with determinants on the chains associated in the above alpha-neoprotein molecules. Determinants dependent on the quaternary structure of alpha-neoprotein and of alpha-crystallin molecules were completely different. Some of the quaternary determinants of various alpha-neoproteins were type specific and did not occur in molecules with different A to B chain ratios. Other quaternary determinants occurred in all alpha-neoproteins. An excess of A chains did not revert alpha-neoproteins to alpha-crystallin. However, alpha-neoprotein molecules did interact with added B chains forming neomolecules with lower A to B chain ratios.  相似文献   

5.
The distribution of A- and B-crystallin in the developing lens of human (Carnegie stages 13 to 23) and rat embryos (embryonic days E11 to 18) was examined immunohistochemically. In a human embryo at stage 13, the lens placode was already immunoreactive to B-crystallin, but not to A-crystallin. At stage 15, the lens vesicle was intensely immunoreactive both to A- and B-crystallin. From stages 16 to 23, the lens epithelial cells and fiber cells were immunoreactive to A- and B-crystallin. In rat embryos, A-crystallin appeared in the lens pit at E12, and B-crystallin appeared in the elongating lens fiber cells at E14. From E15 to E18, the lens epithelial cells and fiber cells were immunoreactive to A-crystallin. The lens fiber cells were also immunoreactive to B-crystallin, but the epithelial cells were not. These findings suggest that B-crystallin appears earlier than A-crystallin in the human lens, but at a later period than A-crystallin in the rat lens. B-Crystallin was not detected in the epithelial cells of the rat lens, but was perisistently present in the epithelial cells of the human lens.  相似文献   

6.
The rat aldolase B promoter acts as a replication origin in vivo, as well as an autonomously replicating sequence (ARS). Here, we examined roles of a polypurine stretch (site PPu) in this origin, which is indispensable to the ARS activity. Purification of site PPu-binding protein revealed that site PPu binds Puralpha and Purbeta, i.e., single-stranded DNA-binding proteins whose roles in replication have been implicated, but less clear. Biochemical analyses showed that site PPu even in a longer DNA fragment is unstable in terms of double-helix, implying that Puralpha/beta may stabilize single-stranded state. Deletion of site PPu from the origin DNA, which was ectopically positioned in the mouse chromosome, significantly reduced replicator activity. Chromatin immunoprecipitation experiments showed that deletion of site PPu abolishes binding of the Puralpha/beta proteins to the origin. These observations suggest functional roles of site PPu and Puralpha/beta proteins in replication initiation.  相似文献   

7.
Slits are large molecular and extracellular glycoproteins that may function as chemorepellents in axon guidance and neural cell migration. The heterogeneity of the mRNA for slit has been described. Its variants indicate considerable potential for alternative splicing, resulting in the generation of multiple protein isoforms. We examined the regions in which these isoforms are expressed, and identified the highest expression of a splicing product for slit1 in rat brain rather than in other organs. The splicing product, Slit1alpha, arises through alternative splicing at the C-terminus of Slit1, causing defects in the cysteine knot domain. We show that slit1alpha exists in the hippocampus and cerebral cortex in rat brain by in situ hybridization, and that it acts as a chemorepellent in olfactory bulb axon guidance in vitro. These findings suggest that Slit1alpha is an active Slit1 protein specific in the vertebrate nervous system.  相似文献   

8.
The membrane structure of the naturally occurring gramicidins A, B, and C was investigated using circular dichroism (CD) spectroscopy and single-channel recording techniques. All three gramicidins form channels with fairly similar properties (Bamberg, E., K. Noda, E. Gross, and P. L?uger. 1976. Biochim. Biophys. Acta. 419:223-228.). When incorporated into lysophosphatidylcholine micelles, however, the CD spectrum of gramicidin B is different from that of gramicidin A or C (cf. Prasad, K. U., T. L. Trapane, D. Busath, G. Szabo, and D. W. Urry. 1983. Int. J. Pept. Protein Res. 22:341-347.). The structural identity of the channels formed by gramicidin B has, therefore, been uncertain. We find that when gramicidins A and B are incorporated into dipalmitoylphosphatidylcholine vesicles, their CD spectra are fairly similar, suggesting that the two channel structures could be similar. In planar bilayers, gramicidins A, B, and C all form hybrid channels with each other. The properties of the hybrid channels are intermediate to those of the symmetric channels, and the appearance rates of the hybrid channels (relative to the symmetric channels) corresponds to what would be predicted if all three gramicidin molecules were to form structurally equivalent channels. These results allow us to interpret the different behavior of channels formed by the three gramicidins solely on the basis of the amino acid substitution at position 11.  相似文献   

9.
10.
11.
12.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

13.
Alternative splicing of α-tropomyosin (α-TM) involves mutually exclusive selection of exons 2 and 3. Selection of exon 2 in smooth muscle (SM) cells is due to inhibition of exon 3, which requires both binding sites for polypyrimidine tract-binding protein as well as UGC (or CUG) repeat elements on both sides of exon 3. Point mutations or substitutions of the UGC-containing upstream regulatory element (URE) with other UGC elements disrupted the α-TM splicing pattern in transfected cells. Multimerisation of the URE caused enhanced exon skipping in SM and various non-SM cells. In the presence of multiple UREs the degree of splicing regulation was decreased due to the high levels of exon skipping in non-SM cell lines. These results suggest that the URE is not an intrinsically SM- specific element, but that its functional strength is fine tuned to exploit differences in the activities of regulatory factors between SM and other cell types. Co-transfection of tropomyosin reporters with members of the CUG-binding protein family, which are candidate URE-binding proteins, indicated that these factors do not mediate repression of tropomyosin exon 3.  相似文献   

14.
15.
16.
Phosphodiesterase-6 (PDE6) is the key effector enzyme of the phototransduction cascade in rods and cones. The catalytic core of rod PDE6 is a unique heterodimer of PDE6A and PDE6B catalytic subunits. The functional significance of rod PDE6 heterodimerization and conserved differences between PDE6AB and cone PDE6C and the individual properties of PDE6A and PDE6B are unknown. To address these outstanding questions, we expressed chimeric homodimeric enzymes, enhanced GFP (EGFP)-PDE6C-A and EGFP-PDE6C-B, containing the PDE6A and PDE6B catalytic domains, respectively, in transgenic Xenopus laevis. Similar to EGFP-PDE6C, EGFP-PDE6C-A and EGFP-PDE6C-B were targeted to the rod outer segments and concentrated at the disc rims. PDE6C, PDE6C-A, and PDE6C-B were isolated following selective immunoprecipitation of the EGFP fusion proteins. All three enzymes, PDE6C, PDE6C-A, and PDE6C-B, hydrolyzed cGMP with similar K(m) (20-23 μM) and k(cat) (4200-5100 s(-1)) values. Likewise, the K(i) values for PDE6C, PDE6C-A, and PDE6C-B inhibition by the cone- and rod-specific PDE6 γ-subunits (Pγ) were comparable. Recombinant cone transducin-α (Gα(t2)) and native rod Gα(t1) fully and potently activated PDE6C, PDE6C-A, and PDE6C-B. In contrast, the half-maximal activation of bovine rod PDE6 required markedly higher concentrations of Gα(t2) or Gα(t1). Our results suggest that PDE6A and PDE6B are enzymatically equivalent. Furthermore, PDE6A and PDE6B are similar to PDE6C with respect to catalytic properties and the interaction with Pγ but differ in the interaction with transducin. This study significantly limits the range of mechanisms by which conserved differences between PDE6A, PDE6B, and PDE6C may contribute to remarkable differences in rod and cone physiology.  相似文献   

17.
18.
19.
The SEC17 gene of Saccharomyces cerevisiae is required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus. Here we report that the product of the SEC17 gene has the exact biochemical properties expected for a yeast homologue of the mammalian transport factor, alpha-SNAP. The DNA sequence of SEC17 codes for a protein of predicted molecular mass of 33 kDa. Immunoblotting indicates that Sec17p fractionates as a peripheral membrane protein and is mostly soluble when overexpressed, suggesting the presence of a saturable membrane receptor for Sec17p. Sec17p was purified from yeast cytosol using a SNAP-dependent in vitro mammalian Golgi transport assay. Kinetic analysis using this assay shows Sec17p acts temporally close to the fusion of transport vesicles with the medial Golgi compartment. In yeast extracts, Sec17p binds to Sec18p with a 1:1 stoichiometry. The interaction between Sec17p and Sec18p requires an activity provided by yeast membranes, and this putative membrane receptor activity is not extracted by high salt treatment of membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号