首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Attention deficit hyperactivity disorder (ADHD) is the most commonly diagnosed childhood psychiatric disorder. We have found that a transgenic mouse bearing a human mutant thyroid receptor (TRbeta1) expresses all of the defining symptoms of ADHD--inattention, hyperactivity, and impulsivity--as well as a 'paradoxical' response to methylphenidate (MPH). As with ADHD, the behavioral phenotypes expressed by the TRbeta transgenic mice are dynamic and sensitive to changes in environmental conditions, stress, and reinforcement. TRbeta transgenic mice are euthyroid except for a brief period during postnatal development, but the behavioral phenotypes, elevated dopamine turnover, and paradoxical response to MPH persist into adulthood. Thus, like the vast majority of children with ADHD, the TRbeta transgenic mice exhibit the symptoms of ADHD in the complete absence of thyroid abnormalities. This suggests that even transient perturbations in developmental thyroid homeostasis can have long-lasting behavioral and cognitive consequences, including producing the full spectrum of symptoms of ADHD.  相似文献   

2.
3.
4.
We have overexpressed the human beta 1 thyroid hormone receptor in insect cells using a recombinant baculovirus to a level of 5-10% of total cellular protein. The recombinant protein migrates as a 50 kDa band by SDS-PAGE and Western blot analysis. The expressed receptor binds to L-T3 with a Kd of 1.3 +/- 0.4 x 10(-10) M and to thyroid hormone analogues with an affinity hierarchy of TRIAC greater than L-T3 greater than L-T4 greater than rT3. Gel retardation assays show highly specific receptor binding to a TRE which is modified by the presence of ligand and avidin-biotin complex DNA analysis shows a Kd of 6.2 +/- 2.0 x 10(-10) M for this interaction. These results indicate high level expression of hTR beta with authentic hormone and DNA binding properties.  相似文献   

5.
BACKGROUND: Mutations in the ligand-binding domain of the thyroid hormone receptor beta (TR beta) gene cause the syndrome of resistance to thyroid hormone (RTH). The clinical phenotype results from the antagonism of the normal TR alpha and the non-mutated TR beta alleles by the TR beta 1 mutants, via a dominant negative effect. There is, however, marked heterogeneity of organ resistance within and among kindreds with RTH. This study examines the potential role of cell type in modulating the dominant negative potency of human TR beta 1 (h-TR beta 1) mutants. MATERIALS AND METHODS: Transient transfections were performed in HeLa and NIH3T3 cells, using a wild type (WT) and three naturally occurring mutant h-TR beta 1 constructs, and three natural thyroid hormone response elements (TREs). Immunocytochemistry was performed to detect levels of TR beta 1 expression in these two cell types. In order to determine how TR beta 1 interacts with other cellular partners, gel-shift analyses using HeLa and NIH3T3 nuclear extracts were performed. RESULTS: Transfection studies using WT h-TR beta 1 in HeLa and NIH3T3 cells, showed that the 3,3',5-triiodothyronine (T3)-induced transactivation of the different TREs varied between cell types. Unlike the non-T3-binding h-TR beta 1 mutant, PV, mutants ED and OK displayed the expected T3-induced dose responsiveness in these two cell types. For each TRE examined, the magnitude of the dominant negative effect varied between the cell types. The levels of receptor expression in HeLa and NIH3T3 cells were identical, as determined by immunocytochemistry. Gel-shift analyses showed differences in the formation of hetero- and homodimers depending on both the cell type and TRE motif. CONCLUSIONS: The cell type in which a mutant receptor operates affects the relative amounts of hetero- and homodimers. Together with the nature of the mutation and the TRE-motif, this could modulate the dominant negative action of mutant receptors in different tissues, which, in turn, could contribute to the variable phenotypic characteristics of RTH.  相似文献   

6.
We have previously reported a family, Kindred A, with autosomal dominant generalized thyroid hormone resistance in which affected members were found to have a mutation in the carboxy-terminal domain of the c-erbA beta thyroid hormone receptor. In the current study, the thyroid hormone and DNA-binding properties of this mutant receptor were determined using c-erbA beta protein synthesized in vitro. Both the wild-type human placental c-erbA beta and Kindred A receptors bound [125I]-triiodothyronine, although the Kindred A receptor had decreased affinity for the hormone. The affinity for triiodothyronine was 4.5 x 10(9) M-1 and 2.3 x 10(10) M-1 for the mutant and wild-type receptors, respectively. No abnormality of DNA-binding was detected with the Kindred A receptor using a sensitive avidin-biotin DNA-binding assay with DNA fragments containing thyroid hormone response elements. The Kindred A mutant receptor which displays abnormal triiodothyronine-binding but normal DNA-binding activities in vitro acts as a dominant negative inhibitor of thyroid hormone action in man.  相似文献   

7.
Different point mutations have been identified in the T3-binding domain of the c-erbA beta thyroid hormone receptor gene that are associated with variant phenotypes of generalized thyroid hormone resistance (GTHR). In most cases of GTHR, heterozygotes are affected; a single mutant allele results in the inhibition of the function of normal thyroid hormone receptors. We report here a novel genetic abnormality, a 3-basepair (bp) deletion in the T3-binding domain of the beta-receptor in a kindred, S, with GTHR. One patient, S1, was the product of a consanguineous union of two heterozygotes and was homozygous for this defect. Heterozygotes from kindred S harbored a CAC deletion at nucleotides 1295-1297, which resulted in the deduced loss of amino acid residue threonine at codon 332, and they displayed elevated free T4 levels and inappropriately normal TSH levels characteristic of other kindreds with GTHR. However, patient S1, who had two mutant alleles, had markedly elevated TSH and free T4 levels and displayed profound abnormalities in brain development and linear growth. A fibroblast c-erbA beta cDNA extending from codon 175 to stop codon 457 was cloned from patient S1, sequenced, and used to create a full-length mutant cDNA. The kindred S mutant receptor was synthesized in vitro and did not bind T3. This mutant receptor did bind with similar avidity as the wild-type human beta-receptor to thyroid hormone response elements of the human TSH beta (-12 to 43 bp) and rat GH (-188 to -160 bp) genes. Kindred S showed the effect in man of heterozygous and homozygous expression of a dominant negative form of c-erbA beta.  相似文献   

8.
Mutations in the thyroid hormone receptor (TR) beta gene result in resistance to thyroid hormone (RTH), characterized by reduced sensitivity of tissues to thyroid hormone. To understand which physiological TR pathways are affected by mutant receptors, we crossed mice with a dominantly negative TRbeta mutation (TRbetaPV) with mice carrying a TRbeta null mutation (TRbeta(-/-)) to determine the consequences of the TRbetaPV mutation in the absence of wild-type TRbeta. TRbeta(PV/-) mice are distinct from TRbeta(+/-) mice that did not show abnormalities in thyroid function tests. TRbeta(PV/-) mice are also distinct from TRbeta(PV/+) and TRbeta(-/-) mice in that the latter shows mild dysfunction in the pituitary-thyroid axis, whereas the former exhibit very severe abnormalities, including extensive papillary hyperplasia of the thyroid epithelium, indistinguishable from that observed in TRbeta(PV/PV) mice. Similar to TRbeta(PV/PV) mice, TRbeta(PV/-) mice exhibited impairment in weight gain. Moreover, the abnormal regulation patterns of T3-target genes in the tissues of TRbeta(PV/-) and TRbeta(PV/PV) mice were strikingly similar. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed with TRalpha1 for binding to thyroid hormone response elements in TRbeta(PV/-) mice as effectively as in TRbeta(PV/PV) mice. Thus, the actions of mutant TRbeta are markedly potentiated by the ablation of the second TRbeta allele, suggesting that interference with wild-type TRalpha1-mediated gene regulation by mutant TRbeta leads to severe RTH.  相似文献   

9.
We have isolated and characterized a cDNA encoding a chicken beta homolog of c-erbA, or thyroid hormone receptor (TR). Chicken liver cDNA libraries were screened with a rat TR beta-1 cDNA probe, and several cDNA inserts were isolated and characterized. The sequence of one cDNA predicts a 369-amino-acid open reading frame (ORF), with a protein sequence that possesses 96% identity with that of rat TR beta-1, but only 88% identity with chicken TR alpha. These data indicate that the cDNA likely encodes a beta form of TR that has the expected putative DNA and T3 binding domains. The chicken TR beta (chTR beta) in vitro translated protein binds T3 with high affinity, and binds both the thyroid hormone response element (TRE) from the rat growth hormone gene and the Xenopus vitellogenin A2 gene estrogen response element (ERE), similarly to that of the rat TR beta-1. Northern blot analysis revealed the expression of a 7.0-kb RNA in several tissues including cerebellum, pituitary, kidney, and liver. This chicken liver TR beta cDNA sequence varies in both the 5' and 3' untranslated regions from the chicken kidney TR beta cDNA sequence recently reported (Forrest et al., 1990). The 5' untranslated cDNA sequence divergence occurs near a potential splice site junction of the human TR beta gene, suggesting that this chicken liver cDNA may represent an alternatively spliced RNA product of the chicken TR beta gene.  相似文献   

10.
11.
Thyroid hormone (T(3)) regulates bone turnover and mineralization in adults and is essential for skeletal development. Surprisingly, we identified a phenotype of skeletal thyrotoxicosis in T(3) receptor beta(PV) (TRbeta(PV)) mice in which a targeted frameshift mutation in TRbeta results in resistance to thyroid hormone. To characterize mechanisms underlying thyroid hormone action in bone, we analyzed skeletal development in TRalpha1(PV) mice in which the same PV mutation was targeted to TRalpha1. In contrast to TRbeta(PV) mice, TRalpha1(PV) mutants exhibited skeletal hypothyroidism with delayed endochondral and intramembranous ossification, severe postnatal growth retardation, diminished trabecular bone mineralization, reduced cortical bone deposition, and delayed closure of the skull sutures. Skeletal hypothyroidism in TRalpha1(PV) mutants was accompanied by impaired GH receptor and IGF-I receptor expression and signaling in the growth plate, whereas GH receptor and IGF-I receptor expression and signaling were increased in TRbeta(PV) mice. These data indicate that GH receptor and IGF-I receptor are physiological targets for T(3) action in bone in vivo. The divergent phenotypes observed in TRalpha1(PV) and TRbeta(PV) mice arise because the pituitary gland is a TRbeta-responsive tissue, whereas bone is TRalpha responsive. These studies provide a new understanding of the complex relationship between central and peripheral thyroid status.  相似文献   

12.
Thyroid hormone, acting through several nuclear hormone receptors, plays important roles in thermogenesis, lipogenesis and maturation of the neonatal brain. The receptor specificity for mediating these effects is largely unknown, and to determine this we developed mice lacking the thyroid hormone receptor TR alpha 1. The mice have an average heart rate 20% lower than that of control animals, both under normal conditions and after thyroid hormone stimulation. Electrocardiograms show that the mice also have prolonged QRS- and QTend-durations. The mice have a body temperature 0.5 degrees C lower than normal and exhibit a mild hypothyroidism, whereas their overall behavior and reproduction are normal. The results identify specific and important roles for TR alpha 1 in regulation of tightly controlled physiological functions, such as cardiac pacemaking, ventricular repolarisation and control of body temperature.  相似文献   

13.
The transforming growth factor-betas (TGFbetas) have multiple roles, making genetic analysis of their functions difficult. We therefore developed transgenic mouse lines to disrupt TGFbeta signaling using a mechanism that is inducible, reversible, and cell-type specific. The transgenic mouse lines carry an EGFP-pBi-DeltaTbetaRII construct (PTR). The DeltaTbetaRII element codes for a dominant-negative receptor that is known to disrupt TGFbeta signaling. The DeltaTbetaRII has a c-myc tag. The transgene was silent in the PTR mice, with expression of both EGFP and DeltaTbetaRII occurring when the PTR mice were crossed with mice that express the tetracycline transactivator (CMV-tTA). The expression of EGFP was repressed by the addition of doxycycline to the drinking water of the PTRxCMV-tTA mice. The PTR mice were then crossed with neuron-specific-tTA mice. Expression of the DeltaTbetaRII transgene in these mice led to an upregulation of native TGFbeta receptor expression, suggesting that neurons can modulate their responsiveness to TGFbetas.  相似文献   

14.
15.
16.
By analogy with steroid receptors, human placental thyroid hormone nuclear receptor (hTR beta 1) could be divided into four functional domains: A/B (Met1-Leu101), C (Cys102-Ala170), D (Thr171-Lys237), and E (Arg238-Asp456). The E domain was thought to bind thyroid hormone. To evaluate whether domain E alone is sufficient to bind T3 or requires the presence of other domains for functional T3-binding activity, a series of deletion mutants was constructed. The mutants were expressed in Escherichia coli, and the expressed proteins were purified. Analysis of the T3-binding affinity and analog specificity of the purified truncated hTR beta 1 indicated that domain E alone did not have T3-binding activity. Extension of the amino-terminal sequence of domain E to include part of domain D yielded a mutant (Lys201-Asp456) with a Ka for T3 of 0.5 +/- 0.2 x 10(9) M-1. Further extension to include the entire domain D (Met169-Asp456) yielded a mutant with T3-binding activity with a Ka of 0.8 +/- 0.1 x 10(9) M-1. Further extension of the amino-terminal sequence to include domain C increased the affinity for T3 by nearly 2-fold (Ka = 1.5 +/- 0.4 x 10(9) M-1). The Ka for the wild-type hTR beta 1 is 1.5 +/- 0.2 x 10(9) M-1. Furthermore, mutant (Met169-Asp456) binds to 3',5',3-triiodo-L-thyropropionic acid, D-T3, L-T4, and L-T3 with 307%, 37%, 7%, and 0.1%, respectively, of the activity of L-T3. This order of analog affinity is similar to that of the wild-type hTR beta 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
D Forrest  M Sjberg    B Vennstrm 《The EMBO journal》1990,9(5):1519-1528
Thyroid hormones and their receptors (TRs) have critical functions in development. Here we show that a chicken TR beta cDNA clone encodes a receptor with a novel, short N-terminal domain. In vitro-expressed TR beta protein bound thyroid hormone with similar affinity as the chicken TR alpha. Comparison of expression of TR alpha and TR beta mRNAs throughout chicken development until 3 weeks post-hatching revealed ubiquitous expression of TR alpha mRNAs (in 14 different tissues) with some variations in levels, from early embryonic stages. In contast, expression of TR beta mRNA was restricted, occurring notably in brain, eye, lung, yolk sac and kidney, and was subject to striking developmental control, especially in brain where levels increased 30-fold upon hatching. Levels also sharply increased in late embryonic lung, but were relatively high earlier in embryonic eye and yolk sac. RNase protection analyses detected no obvious mRNAs for alpha and beta TRs with variant C-termini as demonstrated previously for the rat TR alpha gene. The data suggest a general role for TR alpha and specific developmental functions for TR beta, and that thyroid-dependent development involves temporal and tissue-specific expression of the TR beta gene.  相似文献   

18.
19.
Resistance to thyroid hormone (RTH) is caused by mutations of the thyroid hormone receptor beta (TR beta) gene. Almost all RTH patients are heterozygous with an autosomal dominant pattern of inheritance. That most are clinically euthyroid suggests a compensatory role of the TR alpha1 isoform in maintaining the normal functions of thyroid hormone (T3) in these patients. To understand the role of TR alpha1 in the manifestation of RTH, we compared the phenotypes of mice with a targeted dominantly negative mutant TR beta (TR betaPV) with or without TR alpha1. TR betaPV mice faithfully recapitulate RTH in humans in that these mice demonstrate abnormalities in the pituitary-thyroid axis and impairment in growth. Here we show that the dysregulation of the pituitary-thyroid axis was worsened by the lack of TR alpha1 in TR betaPV mice, and severe impairment of postnatal growth was manifested in TR betaPV mice deficient in TR alpha1. Furthermore, abnormal expression patterns of T3-target genes in TR betaPV mice were altered by the lack of TR alpha1. These results demonstrate that the lack of TR alpha1 exacerbates the manifestation of RTH in TR betaPV mice. Therefore, TR alpha1 could play a compensatory role in mediating the functions of T3 in heterozygous patients with RTH. This compensatory role may be especially crucial for postnatal growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号