首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Phenylethanolamine N -methyltransferase (PNMT) activity assayed by a sensitive radiochemical method was found to be distributed unevenly in the adult rat brain. Highest activities of this enzyme were located in the medulla and the hypothalamus. Small amounts of adrenaline were identified in the hypothalamus using a sensitive enzymatic radiochemical assay procedure, whereas in the medulla and other brain regions the values for adrenaline were at the limits of the sensitivity of the assay for this amine. The daily administration of dexamethasone (1 mg/kg) to adult rats for 13 days significantly increased PNMT activity in medulla and hypothalamus and also increased the adrenaline content of the hypothalamus. Five daily injections of dexamethasone (0·1 mg/kg) to newborn rats did not alter the PNMT activity or the catecholamine content of the brain, but markedly increased the PNMT activity and adrenaline content of superior cervical ganglia. Higher doses of dexamethasone given to newborn rats (6 daily injections of 1 mg/kg) increased PNMT activity both in the medulla and in the hypothalamus.  相似文献   

2.
A high-performance liquid chromatographic assay with electrochemical detection is described for the simultaneous determination of levodopa, 3-O-methyldopa, dopamine, dihydroxyphenylacetic acid, homovanillic acid, 3-methoxytyramine, noradrenaline, adrenaline, 3-methoxy-4-hydroxyphenylethylene glycol and 5-hydroxyindoleacetic acid in rat brain dialysates. Samples are obtained in vivo using the microdialysis technique. Microdialysis probes are placed in the brain area to be studied and neurochemicals are collected by perfusion of the probe with modified Ringer's solution. Direct injection of the dialysates allows rapid and reliable results to be obtained.  相似文献   

3.
Summary The presence of dopamine--hydroxylase (DBH) and phenylethanol-amine-N-methyltransferase (PNMT) immunoreactivity in specific neurones of the snail Helix aspersa has been demonstrated. In addition, high performance liquid chromatography and electrochemical detection have revealed the presence of noradrenaline and adrenaline in the snail central nervous system, although the major catecholamine is dopamine. These results suggest that adrenaline, and perhaps noradrenaline, have transmitter or modulatory functions in the snail nervous system.  相似文献   

4.
Simple and sensitive methods for the determination of plasma catecholamines are of great interest since the level of catecholamines in plasma reflects the activity of the sympatho-adrenal system. In the present work a previously described procedure based on high pressure liquid chromatography with electrochemical detection has been adapted for assay of plasma catecholamines. This method permits simultaneous detection of noradrenaline, adrenaline and dopamine in concentrations down to 0.1 nmol/1 in less than one ml plasma.  相似文献   

5.
An improved method for the determination of catecholamines in biological fluids, by reversed-phase high-performance liquid chromatography (HPLC) with fluorimetric detection is presented. The pH titration previously employed in the alumina extraction was abandoned in favour of the use of a molar excess of pH 8.5 Tris—HCl buffer. A novel lyophilisation step serves to concentrate the catechols and by reconstituting in mobile phase, chromatography disturbances are minimised. The addition of 2 mM octanesulphonic acid to a citrate—phosphate mobile phase at pH 6.0 gave optimal resolution and sensitivity.That HPLC separation can improve the specificity of the trihydroxyindole reaction, to the extent of providing a reliable analytical method, has been demonstrated and validated by the technique of HPLC with electrochemical detection. A correlation coefficient of 0.98 was obtained between the two techniques as applied to the measurement of urinary catecholamines. The HPLC—fluorimetric method was sensitive enough to measure 0.1 ng/ml of noradrenaline or adrenaline at a signal-to-noise ratio of 2.0. Application of the method to the quantitative determination of catecholamines in human urine, plasma and rat brain homogenates is demonstrated.  相似文献   

6.
The content of some biogenic monoamines and their metabolites in rat brain and heart in different periods of oxygen epilepsia was studied using high performance liquid chromatography with electrochemical detection. It was shown that already at the 5th minute of exposure to oxygen adrenaline, DOPA and some noradrenaline metabolites disappeared in the brain and noradrenaline level reduced. At this period in rat heart the reduction of catecholamine content was the most distinct and serotonin level was unchanged. At the beginning of convulsive period the modifications of biogenic amines content were nonparallel in brain regions: in the heart the reduction of catecholamine level went on, especially in right ventricle. In the terminal phase of oxygen epilepsia brain biogenic amines increased, however, not up to normal meaning, heart catecholamines at this period were at the same level as at the beginning of the convulsive period.  相似文献   

7.
A new, simple, rapid and sensitive method for the determination of γ-aminobutylic acid (GABA) has been developed by high-performance liquid chromatography with electrochemical detection (LCEC). A new and unique technique for LCEC by using the reductive-oxidative mode of a dual electrochemical detector provided a simple and sensitive assay method for GABA. The standard curve was linear over a concentration range of 1–1000 ng. The detection limit for GABA was less than 0.5 ng. This new method was adapted to the assay of the transmitter released endogenously from the cerebral cortical slices of the rat. Endogenous GABA release evoked by high K+ was reduced when superfusion was performed in the presence of 100 μM forskolin.  相似文献   

8.
A highly sensitive and specific method for the assay of dipeptidyl-aminopeptidase II (DAP II) in crude enzyme preparations such as serum and tissue homogenates has been established by using a newly synthesized fluorogenic substrate, 7-Lys-Ala-4-methylcoumarinamide. The enzymatically formed 7-amino-4-methylcoumarin was determined by high-performance liquid chromatography with fluorescence detection. The activities of other aminopeptidases in human serum and rat brain homogenates were completely inhibited by o-phenanthroline without any effect on DAP II activity to permit specific determination of DAP II. The limit of sensitivity for DAP II activity was about 300 fmol/30 min. DAP II activity was found to be increased in sera from cancer patients, in contrast to the decrease in serum DAP IV activity. DAP II activity was found to be unequally distributed in rat brain regions, and the highest activity was found in the hypothalamus.  相似文献   

9.
A new, fast and sensitive assay for normetanephrine (NM), free and total 3,4-dihydroxyphenylethyleneglycol (DOPEG), and free and total 3-methoxy-4-hydroxyphenylethyleneglycol (MOPEG) in brain tissue is described. The method is based on high-performance liquid chromatography with electrochemical detection. Small Sephadex G 10 columns were used for prepurification. This permitted the additional isolation and quantification of tyrosine, 3,4-dihydroxyphenylalanine, noradrenaline, dopamine, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid. The compounds were determined in six brain areas (striatum, cortex, hippocampus, hypothalamus, brainstem, and cerebellum). Most DOPEG and MOPEG in rat brain was present in the conjugated form, except for the cerebellum, where about 80% of MOPEG was nonconjugated. No postmortem effects on MOPEG levels were observed; a slight increase in DOPEG in certain brain areas was found in microwave-killed rats. The effects of clonidine, yohimbine, N,N-dipropyl-5,6-ADTN, and chlorpromazine on the concentrations of the five noradrenaline (NA) metabolites were determined. Free and total DOPEG and MOPEG provide similar information on NA metabolism, whereas NM (after monoamine oxidase inhibition) reflects a different type of interaction of drugs with NA metabolism. The similarity in the pattern of drug-induced changes in NA metabolism in the various brain areas suggests that adrenoreceptors mediating NA metabolism are homogeneously distributed throughout the brain.  相似文献   

10.
A highly sensitive assay for tyrosine hydroxylase (TH) activity by high-performance liquid chromatography (HPLC) with amperometric detection was devised based on the rapid isolation of enzymatically formed DOPA by a double-column procedure, the columns fitted together sequentially (the top column of Amberlite CG-50 and the bottom column of aluminium oxide). DOPA was adsorbed on the second aluminium oxide column, then eluted with 0.5 M hydrochloric acid, and assayed by HPLC with amperometric detection. d-Tyrosine was used for the control. α-Methyldopa was added to the incubation mixture as an internal standard after incubation. This assay was more sensitive than radioassays and 5 pmol of DOPA formed enzymatically could be measured in the presence of saturating concentrations of tyrosine and 6-methyltetrahydropterin. The TH activity in 2 mg of human putamen could be easily measured, and this method was found to be particularly suitable for the assay of TH activity in a small number of nuclei from animal and human brain.  相似文献   

11.
We report a sensitive new method for the determination of timiperone in rat plasma by using high-performance liquid chromatography with electrochemical detection. The method involves extraction of plasma samples with heptane-isoamyl alcohol at pH>8, followed by back-extraction into dilute acetic acid. Separation was accomplished by reversed-phase high-performance liquid chromatography on an ODS column with the mobile phase consisting of 0.1 M phosphate buffer (pH 3.5)-acetonitrile-methanol (65:20:15, v/v). Recovery was greater than 80%. Calibration curve was linear over the concentration range 0.5–50.0 ng/ml. The limit of quantitation of timiperone was 0.5 ng/ml plasma.  相似文献   

12.
DNA and RNA contents in 20 brain regions or nuclei of the rat were determined by a highly sensitive method using high-performance liquid chromatography with electrochemical detection. The high DNA and RNA contents were found in the hypothalamic nuclei, especially the median eminence-arcuate nucleus. These results may be available for the preparation of nucleic acids as the regional control.  相似文献   

13.
A rapid, sensitive method was developed for the simultaneous assay of catecholamines and 3,4-dihydroxyphenylacetic acid in rat brain tissue. The method is simple, involving only tissue disruption, adsorption of the catechols onto alumina, desorption, and injection into a reverse-phase high-performance liquid chromatography system. Selectivity and high sensitivity are obtained using electrochemical detection. The addition of 3,4-dihydroxyphenylacetic acid determination to assays for catecholamines allows one to observe effects of pharmacological maniqulations on in vivo monoamine oxidase activity and/or turnover of dopamine as well as effects on catecholamine concentrations.  相似文献   

14.
A new, sensitive, and specific assay method for guanine nucleotides using high-performance liquid chromatography with dual-electrochemical detection was developed. GTP, GDP, GMP, and cyclic GMP were separated with reversed-phase "ion-pair" chromatography and detected by a dual-electrochemical detector. Only guanine nucleotides among all purine and pyrimidine nucleotides responded to the electrochemical detector at 0.95 V. The peak heights for these guanine nucleotides were linear at concentrations between 0.5 pmol and 1 nmol. The regional distribution of these guanine nucleotides in the rat brain was studied by this new assay method.  相似文献   

15.
A highly sensitive method for the assay of dopamine β-hydroxylase in rat serum and in sample solution prepared from rat adrenal medulla is described which employs high-performance liquid chromatography with fluorescence detection. Octopamine, formed enzymatically from the substrate tyramine, is separated by Dowex 50W-X4 column chromatography and oxidized with periodate to p-hydroxybenzaldehyde, which is then converted into a fluorescent compound with 2,2′-dithiobis(1-aminonaphthalene). The derivative, after extraction with n-hexane—chloroform, is separated by normal-phase chromatography on Alox T. The limit of detection for octopamine formed enzymatically is 10 pmol. This method requires as little as 5 μl of rat serum.  相似文献   

16.
A method has been developed for assay of aldehyde dehydrogenase (ALDH) in brain tissue or in other tissues containing low ALDH-activity. The aldehyde of dopamine was used as the substrate, and the 3,4-dihydroxyphenylacetic acid formed was measured using high-performance liquid chromatography (HPLC) with electrochemical detection. The aldehyde was prepared enzymatically by incubating dopamine with a monoamine-oxidase preparation from rat liver mitochondria in the presence of Na+-bisulfite in 10 mM K+-phosphate buffer (pH 7.5). Rat brain homogenates were incubated in 50 mM Na+-pyrophosphate buffer (pH 8.8) containing 0.5 mM NAD+ and 5 microM aldehyde. The reaction was terminated with perchloric acid containing Na+-bisulfite to trap excess of the aldehyde. The acid supernatants were injected on a reverse-phase HPLC column and elution was performed with citrate buffer, pH 2.50. The method permits assay with 1-10 mg of brain tissue with an overall precision of 3%. The assay rate was 5-6 samples per hour.  相似文献   

17.
A new method for the measurement of tyrosine hydroxylase (TH; EC 1.14.16.2) activity in brain slices was developed by using high-performance liquid chromatography (HPLC) with electrochemical detection (ED). To estimate TH activity in brain slices containing all of the components of the enzyme system, tetrahydrobiopterin, dihydropteridine reductase, and TH itself, slices were incubated with NSD-1055, an inhibitor of aromatic L-amino acid decarboxylase, and 3,4-dihydroxyphenylalanine (DOPA) formed from endogenous tyrosine was measured using HPLC-ED. Hydroxylation of endogenous tyrosine to DOPA in striatal slices was linear up to 90 min at 37 degrees C, and increased by incubation with 20 mM K+ to depolarize the nerve cells. Furthermore, the formation of DOPA could be detected in all parts of brain regions examined, and the activity in this slice system was nearly parallel to the maximal velocity of the homogenate from the slices as enzyme in the presence of saturating concentrations of tyrosine and 6-methyltetrahydropterin as cofactor. This assay system should be useful to study the regulatory mechanisms of TH in relatively intact tissue preparations.  相似文献   

18.
A method was developed for the simultaneous assay of noradrenaline and adrenaline in 2 ml of human plasma. The method involves adsorption of the catechols onto alumina, desorption, lyophilizing, reconstitution, and injection into a reverse-phase ion-pairing liquid chromatography system. Sensitivity and selectivity are introduced using direct electrochemical detection of the column eluant.  相似文献   

19.
A reliable, sensitive and rapid assay has been developed for determining the activity of hydroxyindole-O-methyltransferase (HIOMT; S-adenosyl-l-methionine:N-acetylserotonin-O-methyltransferase; EC 2.1.1.4), which catalyzes the final step in the melatonin (N-acetyl-5-methoxytryptamine) biosynthetic pathway. This method is based on the separation and detection of melatonin formed enzymatically from N-acetylserotonin and S-adenosyl-l-methionine, by high-performance liquid chromatography with fluorometric detection. The detection limit for melatonin formed per sample was as low as 150 fmol, indicating that the sensitivity of this assay was comparable to that of a radioisotopic assay. The assay was applied to the determination of HIOMT activity in rat pineal gland. The HIOMT activity obtained in this study was comparable with, or slightly lower than those reported previously using radioisotopic assays.  相似文献   

20.
Phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) is the terminal enzyme of the catecholaminergic pathway converting noradrenaline to adrenaline. Although preferentially localized in adrenal medulla, evidence exists that PNMT activity and gene expression are also present in the rat heart, kidney, spleen, lung, skeletal muscle, thymus, retina and different parts of the brain. However, data concerning PNMT gene expression in sympathetic ganglia are still missing. In this study, our effort was focused on identification of PNMT mRNA and/or protein in stellate ganglia and, if present, testing the effect of stress on PNMT mRNA and protein levels in this type of ganglia. We identified both PNMT mRNA and protein in stellate ganglia of rats and mice, although in much smaller amounts compared with adrenal medulla. PNMT gene expression and protein levels were also increased after repeated stress exposure in stellate ganglia of rats and wild-type mice. Similarly to adrenal medulla, the immobilization-induced increase was probably regulated by glucocorticoids, as determined indirectly using corticotropin-releasing hormone knockout mice, where immobilization-induced increase of PNMT mRNA was suppressed. Thus, glucocorticoids might play an important role in regulation of PNMT gene expression in stellate ganglia under stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号