首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between human apohemoglobin A and CN-Mesohemin, a monomeric non-native heme derivative, was probed by Soret spectrophotometric titrations in 0.05 M potassium phosphate buffer, pH 7 at varied temperatures. Hypsochromic shifts in the absorbance maxima were observed at all temperatures below 10°C. First derivative spectroscopy of CN-Mesohemin titrations was used to provide further evidence of a spectral shift upon CN-Mesohemoglobin assembly. Findings of Soret Spectral shifts demonstrate a preference for the α chain heme site by CN-Mesohemin indicative of semi-α-hemoglobin intermediate formation. CN-Mesohemin, a derivative with peripheral 2,4 ethyl groups, does not possess the extended conjugation seen for native CN-Protohemin with its 2,4 vinyl groups. Indeed, reduced polarity of CN-Mesohemin over that of CN-Protohemin resulted in distinct temperature dependencies. Molecular visualization and protein-ligand interaction analysis targeted a functionally diverse residue unique to the α-chain. Tyrosine-42 (a polar/non-polar amino acid) appeared to play a prominent role in the assembly process.  相似文献   

2.
Study of the specific heme orientation in reconstituted hemoglobins   总被引:1,自引:0,他引:1  
K Ishimori  I Morishima 《Biochemistry》1988,27(13):4747-4753
NMR studies of the recombination reaction of apohemoglobin derivatives with natural and unnatural hemes and of the heme-exchange reaction for reconstituted hemoglobin have revealed that the heme is incorporated into the apoprotein with stereospecific heme orientations dependent upon the heme peripheral 2,4-substituents and the axial iron ligand(s). Heme orientations also depend on whether recombination occurs at the alpha or beta subunit and on whether or not the complementary subunit is occupied by the heme. In the recombination reaction with the azido complex of deuterohemin, the alpha subunit of the apohemoglobin preferentially combines with the hemin in the "disordered" heme orientation, whereas protohemin is inserted in either of two heme orientations. Mesohemin inserts predominantly in the "native" heme orientation. For the beta subunit, specific heme orientation was also encountered, but the specificity was somewhat different from that of the alpha subunit. It was also shown that the specific heme orientation in both subunits is substantially affected by the axial heme ligands. These findings imply that apohemoglobin senses the steric bulkiness of both the porphyrin 2,4-substituents and the axial iron ligands in the heme-apoprotein recombination reaction. To gain an insight into the effect of the protein structure, the heme reconstitution reaction of semihemoglobin, demonstrating that the heme orientation in the reconstituted semihemoglobin with the azido-deuterohemin complex was in the native form, was also examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The reaction of apohemoglobin with carbonmonoxy heme and with carbonmonoxy heme dimethyl ester was investigated in the presence and absence of inositol hexaphosphate. The binding stoichiometry of both heme derivatives to apohemoglobin was not affected by the presence of the polyphosphate, while, in both cases, the overall rate of recombination was substantially decreased. The absence of the negatively charged carboxyl groups in the dimethyl ester derivative of the heme indicated that the effect of inositol hexaphosphate on the reaction of apohemoglobin with heme was not due to electrostatic repulsions and resulted from conformational changes occurring upon the interaction of apohemoglobin with inositol hexaphosphate. Qualitative treatment of the kinetic data suggests that these conformational changes destabilize the intermediates of the reaction by increasing their redissociation into the original components. Also, benzenehexacarboxylate produced conformational changes in apohemoglobin and decreased its rate of reaction with carbonmonoxy heme, proving the aspecificity of the interaction of apohemoglobin with polyanions.  相似文献   

4.
Heme-regulated eIF2alpha kinase (HRI) is an important enzyme that modulates protein synthesis during cellular emergency/stress conditions, such as heme deficiency in red cells. It is essential to identify the heme axial ligand(s) and/or binding sites to establish the heme regulation mechanism of HRI. Previous reports suggest that a His residue in the N-terminal region and a Cys residue in the C-terminal region trans to the His are axial ligands of the heme. Moreover, mutational analyses indicate that a residue located in the kinase insertion (KI) domain between Kinase I and Kinase II domains in the C-terminal region is an axial ligand. In the present study, we isolate the KI domain of mouse HRI and employ site-directed mutagenesis to identify the heme axial ligand. The optical absorption spectrum of the Fe(III) hemin-bound wild-type KI displays a broad Soret band at around 373nm, while that of the Fe(II) heme-bound protein contains a band at 422nm. Spectral titration studies conducted for both the Fe(III) hemin and Fe(II) heme complexes with KI support a 1:1 stoichiometry of heme iron to protein. Resonance Raman spectra of Fe(III) hemin-bound KI suggest that thiol is the axial ligand in a 5-coordinate high-spin heme complex as a major form. Electron spin resonance (ESR) spectra of Fe(III) hemin-bound KI indicate that the axial ligands are OH(-) and Cys. Since Cys385 is the only cysteine in KI, the residue was mutated to Ser, and its spectral characteristics were analyzed. The Soret band position, heme spectral titration behavior and ESR parameters of the Cys385Ser mutant were markedly different from those of wild-type KI. Based on these spectroscopic findings, we conclude that Cys385 is an axial ligand of isolated KI.  相似文献   

5.
H2O2 addition to the oxidized cytochrome c oxidase reconstituted in liposomes brings about a red shift of the Soret band of the enzyme and an increased absorption in the visible region with two distinct peaks at approximately 570 and 605 nm. Throughout pH range 6-8.5, the spectral changes at 570 nm and in the Soret band titrate with very similar pH-independent Kd values of 2-3 microM. At the same time, Kd of the peroxide complex measured at 605 nm increases markedly with increased H+ activity reaching the value of 18 +/- 2 microM at pH 6.0. This finding may indicate the presence of two different H2O2-binding sites in the enzyme with different affinity for the ligand at acid pH. The Soret and 570 nm band effects are suggested to report H2O2 coordination to heme iron of alpha 3, whereas the maximum at 605 nm could arise from H2O2 binding to Cu alpha 3 followed by the enzyme transition into the 'pulsed' (or '420/605') conformation. Possible implication of the two H2O2-binding sites for the cytochrome oxidase redox and proton-pumping mechanisms are discussed.  相似文献   

6.
In mammalian peroxidases the proximal histidine is in close interaction with a fully conserved asparagine which in turn is hydrogen bonded with an arginine that stabilizes the propionate substituent of pyrrol ring D in bent conformation. In order to probe the role of this rigid proximal architecture for structural integrity and catalysis of human myeloperoxidase (MPO), the variants Asn421Asp, Arg333Ala and Arg333Lys have been recombinantly expressed in HEK cell lines. The standard reduction potential of the Fe(III)/Fe(II) couple of Asn421Asp was still wild-type-like (−50 mV at pH 7.0) but the spectral properties of the ferric and ferrous forms as well as of higher oxidation states showed significant differences. Additionally, rates of ligand binding and oxidation of both one- and two-electron donors were diminished. The effect of exchange of Arg333 was even more dramatic. We did not succeed in production of mutant proteins that could bind heme at the active site. The importance of this His–Asn–Arg triad in linking the heme iron with the propionate at pyrrol ring D for heme insertion and binding as well as in maintenance of the architecture of the substrate binding site(s) at the entrance to the heme cavity is discussed.  相似文献   

7.
Hemopexin, which acts as an antioxidant by binding heme (K d < 1 pM), is synthesized by hepatic parenchymal cells, by neurons of the central and peripheral nervous systems, and by human retinal ganglia. Two key regulatory molecules, nitric oxide (·NO) and carbon monoxide (CO), both bind to heme proteins and since ferroheme–hemopexin binds CO, the possible role of heme–hemopexin in binding ·NO was investigated. ·NO binds rapidly to hemopexin-bound ferroheme as shown by characteristic changes in the Soret and visible-region absorbance spectra. Circular dichroism spectra of ·NO–ferroheme-hemopexin in the Soret region exhibit an unusual bisignate feature with a zero crossover at the absorbance wavelength maximum, showing that exciton coupling is occurring. Notably, the ·NO complex of ferroheme–hemopexin is sufficiently avid and stable to allow hemopexin to bind this molecule in vivo and, thus, hemopexin may protect against NO-mediated toxicity especially in conditions of trauma and hemolysis.  相似文献   

8.
Glutathione and cysteine bind to the heme of lactoperoxidase, thereby causing a red shift of the Soret band which is reversed upon addition of iodide or guaiacol, two substrates for lactoperoxidase. The rate of formation of the enzyme-thiol complex is enhanced by diiodotyrosine. Binding of diiodotyrosine to lactoperoxidase does not cause a shift of the Soret band which indicates binding to the protein of the enzyme. At neutral pH and low ionic strength, lactoperoxidase is adsorbed on insolubilized diiodotyrosine (diiodotyrosine-agarose). It can be eluted at slightly increased ionic strength which shows that the binding is weak. In the presence of 5 X 10(-4) M glutathione, however, the binding of the enzyme to diiodotyrosine-agarose becomes much stronger so that a high salt concentration is required for elution. Lactoperoxidase is also adsorbed on insolubilized thiols (thiol-agarose). The presence of diiodotyrosine is not required for strong binding. A simple method for the preparation of lactoperoxidase from milk by affinity chromatography is based on the interactions of the enzyme with the two ligands, thiols and diiodotyrosine.  相似文献   

9.
Cytochrome f of oxygenic photosynthesis has an unprecedented structure, including the N-terminus being a heme ligand. The adjacent N-terminal heme-shielding domain is enriched in aromatic amino acids. The atomic structures of the chloroplast and cyanobacterial cytochromes f were compared to explain spectral and redox differences between them. The conserved aromatic side chain in the N-terminal heme-shielding peptide at position 4, Phe and Tyr in plants and algae, respectively, and Trp in cyanobacteria, is in contact with the heme. Mutagenesis of cytochrome f from the eukaryotic green alga Chlamydomonas reinhardtii showed that a Phe4 --> Trp substitution in the N-terminal domain was unique in causing a red shift of 1 and 2 nm in the cytochrome Soret (gamma) and Q (alpha) visible absorption bands, respectively. The resulting alpha band peak at 556 nm is characteristic of the cyanobacterial cytochrome. Conversely, a Trp4 --> Phe mutation in the expressed cytochrome from the cyanobacterium Phormidium laminosum caused a blue shift to the 554 nm alpha band peak diagnostic of the chloroplast cytochrome. Residue 4 was found to be the sole determinant of this 60 cm(-)(1) spectral shift, and of approximately one-half of the 70 mV redox potential difference between cytochrome f of P. laminosum and C. reinhardtii (E(m7) = 297 and 370 mV, respectively). The proximity of Trp-4 to the heme implies that the spectral and redox potential shifts arise through differential interaction of its sigma- or pi-electrostatic potential with the heme ring and of the pi-potential with the heme Fe orbitals, respectively. The dependence of the visible spectrum and redox potential of cytochrome f on the identity of aromatic residue 4 provides an example of the use of the relatively sharp cytochrome spectrum as a "spectral fingerprint", and of the novel structural connection between the heme and a single nonliganding residue.  相似文献   

10.
The absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of valency hybrid hemoglobins and their constituents (alpha + and beta chains for alpha 2+beta 2, alpha and beta + chains for alpha 2 beta 2+: + denotes ferric heme) were measured in the Soret region for F-, H2O, N3- and CN- derivatives. Absorption and MCD spectra of valency hybrid hemoglobins were very similar to the arithmetic mean of respective spectra of their corresponding component chains in all derivatives. The Soret MCD intensity around 408 nm for various complexes of valency hybrid hemoglobins seems to reflect the spin state of ferric chains. Upon ferric and deoxy ferrous subunit association to make the deoxy valency hybrid hemoglobins, only the high-spin forms bound with F- and H2O of alpha 2+beta 2 displayed a blue shift in the peak position around 430 nm and those of alpha 2 beta 2+ an increase in intensity around 430 nm. The blue shift and the increase in intensity were considered to be caused by the structural changes in deoxy beta chains of alpha 2+beta 2 and deoxy alpha chains of alpha beta 2+, respectively. These spectral changes were interpreted on the basis of their oxygen-equilibrium properties. In contrast to absorption and MCD spectra, the CD spectra of valency hybrid hemoglobins were markedly different from the simple addition of those of their component chains in all derivatives examined. The large part of CD spectral changes upon subunit association were interpreted as changes in the heme vicinity accompanied by formation of the alpha 1 beta 1 subunit contact.  相似文献   

11.
We replaced protoheme-IX in native myoglobin with the symmetric protohemes-III and -XIII, in order to investigate the role of heme vinyl-globin contacts on Mb function. The UV-visible spectra and the resonance Raman spectra in the high-frequency region (containing oxidation, spin, and coordination state marker lines) of the two reconstituted Mbs were very similar. However, the signal intensity of the Soret band in the CD spectra and the resonance Raman lines for vinyl bending modes in the low-frequency region notably differed, thereby reflecting altered heme peripheral contacts. The redox potentials, formal heterogeneous electron-transfer rates, and thermal denaturation temperatures of the two reconstituted Mbs were also indistinguishable. In addition, the oxygen binding properties of the ferrous deoxy Mbs were comparable. These results demonstrate that altered heme vinyl-globin interactions only slightly affect the physical properties of Mb. It is therefore likely that the orientation of protoheme-IX about the alpha,gamma-axis in the heme pocket is not necessarily a crucial factor for oxygen binding to native Mb.  相似文献   

12.
Soret spectral contributions of the α-subunit heme pocket have been evaluated by performing static titrations of apohemoglobin A with CNProtohemin under varied experimental conditions. Increasing the temperature from 5 to 30°C in 0.05 M potassium phosphate buffer, pH 7, resulted in a decreasingly prominent hypsochromic shifts reflecting altered the vinyl–globin interactions. Studies at 10°C in over pH range of 6.7–8.0 revealed a profile for the spectral shifts approximating the side chain pK value (7.4) a histidyl residue. These overall spectral changes correspond to ΔE of ≤7 kJ/mol indicative of electrostatic noncovalent interactions. Further our current molecular modeling studies indicate that the spatial arrangement and critical noncovalent interactions of tyrosine 42 and histidine 45 (aromatic residues unique to the α-subunit) make significant contribution to the Soret spectra. Most interestingly, phylogenetic analyses have revealed the presence of a histidyl triad in the α-chain of all vertebrates that form heterotetramers.  相似文献   

13.
Mauk MR  Rosell FI  Mauk AG 《Biochemistry》2007,46(51):15033-15041
Two spectroscopically distinct, non-interconverting forms of human hemopexin have been isolated by immobilized metal ion affinity chromatography and characterized spectroscopically. Form alpha (characterized by a bisignate Soret CD spectrum) and form beta (Soret CD characterized by a positive Cotton effect) exhibit different spectroscopic responses to addition of Zn2+ or Cu2+, yet both forms exhibit the same metal ion-induced decrease in Tm for the thermally induced release of the heme prosthetic group. Far UV-CD spectra indicate that the two isoforms possess essentially identical secondary structures, but their differential retention during metal ion affinity chromatography indicates slight differences in exposure of His residues on the protein surface. We propose that these observations result from the binding of heme in form beta with an orientation that differs from the crystallographically observed binding orientation for rabbit hemopexin by rotation of the heme prosthetic group by 180 degrees about the alpha-gamma meso-carbon axis and from interaction of metal ions at two separate binding sites.  相似文献   

14.
Crystals of cytochrome b5 reduced by sodium dithionite are isomorphous with the oxidized form. An electron density difference map between the two forms was calculated at 2.8 A resolution. There are no changes in main chain conformation or internal side chain orientation upon reduction. However, an ion becomes attached at the entrance of the heme crevice causing displacement of a surface lysine side chain on an adjacent molecule. The ion, identified as a cation by the nature of its coordinating ligands, appears to neutralize one of the heme propionate groups which is partially buried. It is proposed that the negatively charged propionate serves to neutralize the net formal positive charge on the heme iron in the oxidized cytochrome and that the neutralization of the heme iron upon reduction then leads to binding of a cation to the propionate.  相似文献   

15.
The time-resolved spectra of photoproducts from ligand photodissociation of oxyhemoglobin are measured in the Soret spectral region for times from 10 ns to 320 microseconds after laser photolysis. Four processes are detected at a heme concentration of 80 microM: a 38-ns geminate recombination, a 137-ns tertiary relaxation, and two bimolecular processes for rebinding of molecular oxygen. The pseudo-first-order rate constants for rebinding to the alpha and beta subunits of hemoglobin are 3.2 x 10(4) s-1 (31 microseconds lifetime) and 9.4 x 10(4) s-1 (11 microseconds lifetime), respectively. The significance of kinetic measurements made at different heme concentrations is discussed in terms of the equilibrium compositions of hemoglobin tetramer and dimer mixtures. The rebinding rate constants for alpha and beta chains are observed to be about two times slower in the dimer than in the tetramer, a finding that appears to support the observation of quaternary enhancement in equilibrium ligand binding by hemoglobin tetramers.  相似文献   

16.
Human apohemoglobin (globin) was spin-labeled at the beta-93 sulfhydryl groups with 2,2,5,5-tetramethyl-3-aminopyrrolidine-I-oxyl. Spin-labeled globin exhibited an EPR spectra that is less immobilized than that of spin-labeled hemoglobin, indicating the conformational difference in the vicinity of the label between hemoglobin and globin. Spectrophotometric titration of spin-labeled globin with protohemin showed that 1 mol of globin (on the tetramer basis) combines with 4 mol of hemin, producing a holomethemoglobin spectrophotometrically indistinguishable from native methemoglobin. The EPR spectrum was also changed strikingly upon the addition of protohemin. This change, however, was not proportional to the amount of hemin added, but marked changes occurred after 3 to 4 mol of hemin were mixed with 1 mol of spin-labeled globin. The EPR spectrum of spin-labeled hemoglobin thus prepared was identical with that prepared by direct spin labeling to methemoglobin. These results suggest the preferential binding of hemin to alpha-globin chains in the course of heme binding by globin. This assumption was further confirmed by preparing spin-labeled semihemoglobin in which only one kind of chain contained hemin (alpha h betaO SL and alpha O beta h SL). The EPR spectrum of the alpha h beta O SL molecule showed a slightly immobilized EPR spectrum, similar to that of spin-labeled globin mixed with 50% of the stoichiometric amount of hemin. On the other hand, the alpha O beta h SL molecule showed a distinctly different EPR signal from that of globin half-saturated with hemin, and showed an intermediate spectrum between those of beta h SL and alpha h beta h SL. These results indicate that heme binding to globin chains brings about a major conformational change in the protein moiety and that chain-chain association plays a secondary role. We conclude that hemin binds preferentially to alpha-globin chains and that the conformation of globin changes rapidly to that of methemoglobin after all four hemes are attached to globin heme pockets.  相似文献   

17.
Ca2+ ions shift the absorption spectrum of reduced cytochromea in mitochondria by acting from the outside of the membrane. In isolated cytochrome oxidase the shift may be induced by either Ca2+ or H+, the apparent pK varying between 6.20 and 5.75 depending on the state of cytochromea 3. Studies of the Soret band show that Ca2+ also shifts the spectrum of ferrocytochromea 3 in isolated oxidase in contrast to the situation in mitochondria or isolated oxidase reconstituted into liposomes. Model studies with reduced bis-imidazole heme A reveals an analogous spectral shift induced by Ca2+. Esterification of the propionate carboxyls of heme A abolishes the spectral shift, suggesting that it is due to interaction of Ca2+ with these groups. When taken together with the data with intact mitochondria, this suggests that the propionate side chains of cytochromea are accessible to Ca2+ and H+ from the outside of the mitochondrial membrane. In the soluble enzyme both hemesa anda 3 are accessible. Thus hemea may be located near the outside of the inner membrane whereas hemea 3 experiences a different environment in which no Ca2+ shift occurs.  相似文献   

18.
Circular dichroism and 1H and 31P nuclear magnetic resonance spectroscopy have been used to investigate complex formation between cytochrome c and the flavodoxins from Azotobacter vinelandii and Clostridium pasteurianum. Such complexes are known to be involved in the mechanism of electron transfer between these two redox proteins. A large increase in ellipticity in the Soret band of the cytochrome heme was observed upon formation of the Clostridium flavodoxin complex, whereas much smaller changes were found for the complexes with either Azotobacter flavodoxin or an 8 alpha-imidazolyl-FMN-substituted Clostridium flavodoxin analogue. Similarly, the magnitudes of the perturbations of the contact-shifted heme proton resonances obtained upon complexation of cytochrome c by Azotobacter flavodoxin were much smaller than those previously shown for Clostridium flavodoxin [Hazzard, J. T., & Tollin, G. (1985) Biochem. Biophys. Res. Commun. 130, 1281-1286]. 31P nuclear magnetic resonance measurements were also consistent with differences in the interactions between the components in the complexes of the two flavodoxins with cytochrome c. It is suggested that these spectral changes are due to a loosening or opening of the heme crevice upon Clostridium flavodoxin binding, which allows closer contact between the heme and flavin prosthetic groups and results in a faster rate of electron transfer. The implications of these observations for biological oxidation-reduction processes are considered.  相似文献   

19.
The structural changes in the heme macrocycle and substituents caused by binding of Ca(2+) to the diheme cytochrome c peroxidase from Paracoccus pantotrophus were clarified by resonance Raman spectroscopy of the inactive fully oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca(2+)-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high-affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca(2+) or Mg(2+). This increase in the heme distortion explains the red shift in the Soret absorption band that occurs upon Ca(2+) binding. Changes also occur in the low-frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon Ca(2+) binding to site I. These structural changes may lead to loss of the sixth ligand at the peroxidatic heme in the semireduced form of the enzyme and activation.  相似文献   

20.
The C subunit of Ideonella dechloratans chlorate reductase has been expressed in Escherichia coli as a GST fusion protein. Purification from inclusion bodies, followed by refolding and reconstitution with heme, produced a protein with a heme/protein ratio of 0.4, and with UV-vis spectral characteristics similar to those of native chlorate reductase. Wavelength maxima for the alpha and beta bands in the reduced state were 559 and 529 nm for both native chlorate reductase and the reconstituted recombinant subunit, whereas the reduced Soret bands were found at 426 and 424 nm, respectively. These results support the notion of the C subunit as the cytochrome b moiety of I. dechloratans chlorate reductase. Moreover, the availability of a recombinant version of the C subunit is expected to facilitate further studies of electron transfer and protein interaction included in the reaction catalyzed by chlorate reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号