共查询到20条相似文献,搜索用时 0 毫秒
1.
D B Thomson A E Chapman 《European journal of applied physiology and occupational physiology》1988,57(6):691-697
Five subjects contracted forearm supinator muscles which were stretched after development of maximal isometric torque. The ratio of torque at the end of stretch over isometric torque at that position was calculated as excess torque. Excess torque increased with stretch velocity and decreased with stretch amplitude, and it was not dependent upon final muscle length. The rate of decay of torque following stretch could not be shown to depend upon stretch variables. The absence of significant changes in myoelectric activity suggested that with high initial forces, reflex activity did not account for the observed changes. Time-constants of decay (0.15 s to 1.8 s) were much greater than time-constants of rise (approx. 0.07 s) of isometric torque at the same muscle length. This indicates that interaction of series elastic and contractile elements is not the sole cause of prolonged torque following stretch. It is concluded that stretch temporarily enhances the intrinsic contractile properties of a group of human muscles in a manner similar to, but quantitatively different from that seen in isolated muscle preparations. 相似文献
2.
R V Tambovtseva 《Arkhiv anatomii, gistologii i émbriologii》1988,94(5):59-63
By means of morphometrical and histochemical methods for revealing myosin ATPase and SDG activity development of various types of muscle fibers (MF) has been studied in the postmortem material, using m. biceps and m. triceps brachii in human ontogenesis. The flexors and extensors have features in common in the dynamics of the MF maturation, and some distinctive peculiarities. The appearance of histochemical distinctions between the MF takes place on the 5th-6th months of the intrauterine development. Morphofunctional specialization begins with formation of tonic fibers. During the 1st-2nd years phasic fibers form. A relative amount of fast MF in both muscles increases at the age of 11-12 years. The dynamics of final specialization of the MF is connected with stages of sexual maturation. The first stage of the sexual maturation (about 14 years of age) is connected with decrease in the relative amount of the MF of glycolytic type of energy supply and corresponding increase in the number of oxidative type structures. From 15-17 years of age a final differentiation begins, it is connected with an intensive transversal growth of all the MF and distinguish of thick glycolytic MF. The m. biceps brachii has a relatively greater amount of oxidative fibers, and the m. triceps brachii, glycolytic ones. The transversal section area of the MF in the m. triceps brachii exceeds that of the m. biceps brachii, beginning from the 7th month of the intrauterine development up to 14 years of age. The investigation performed does not reveal any anticipating development either in the flexors or in the extensors. The differentiating processes in the m. biceps and m. triceps brachii occur nearly simultaneously. 相似文献
3.
The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion. 相似文献
4.
This anatomic study investigates the possibility of using the long head of the triceps brachii muscle as a free functioning muscle transfer for the upper limb. It has been reported that the long head is not difficult to harvest and that its loss does not create significant donor-site morbidity. The muscle was studied in 23 fresh frozen upper limbs. The long head in all 23 specimens had a constant and proximal vascular pedicle from the profunda brachii artery and vein. The mean pedicle was long (4 cm) and had large-caliber vessels (diameter, 3-mm artery and 4-mm vein). Angiograms were carried out in five specimens and dye perfusion studies in six specimens. A single branch from the radial nerve of at least 7 cm in length innervated the muscle. Muscle architecture was studied in 12 specimens and revealed that the long head of the triceps is better suited for forearm reconstruction than either the gracilis or the latissimus dorsi muscles. The mean physiologic cross-sectional area (8.36 cm(2)) and fiber length (10.8 cm on the superficial surface and 8.2 cm on the deep surface) of the long head match more closely those of the flexor digitorum profundus and the extensor digitorum communis, the muscles most commonly replaced. 相似文献
5.
Degradation of alpha-actin filaments in venous smooth muscle cells in response to mechanical stretch
Goldman J Zhong L Liu SQ 《American journal of physiology. Heart and circulatory physiology》2003,284(5):H1839-H1847
Mechanical stretch has been shown to induce the degradation of alpha-actin filaments in smooth muscle cells (SMC) of experimental vein grafts. Here, we investigate the possible role of ERK1/2 and p38 MAPK in regulating this process using an ex vivo venous culture model that simulates an experimental vein graft. An exposure of a vein to arterial pressure induced a significant increase in the medial circumferential strain, which induced rapid alpha-actin filament disruption, followed by degradation. The percentage of SMC alpha-actin filament coverage was reduced significantly under arterial pressure (91 +/- 1%, 43 +/- 13%, 51 +/- 5%, 28 +/- 3%, and 19 +/- 5% at 1, 6, 12, 24, and 48 h, respectively), whereas it did not change significantly in specimens under venous pressure at theses times. The degradation of SMC alpha-actin filaments paralleled an increase in the relative activity of caspase 3 (3.0 +/- 0.7- and 1.7 +/- 0.4-fold increase relative to the control level at 6 and 12 h, respectively) and a decrease in SMC density (from the control level of 1,368 +/- 66 cells/mm(2) at time 0 to 1,205 +/- 90, 783 +/- 129, 845 +/- 61, 637 +/- 55, and 432 +/- 125 cells/mm(2) at 1, 6, 12, 24, and 48 h of exposure to arterial pressure, respectively). Treatment with a p38 MAPK inhibitor (SB-203580) significantly reduced the stretch-induced activation of caspase 3 at 6 h (from 3.0 +/- 0.7- to 2.2 +/- 0.3-fold) in conjunction with a significant rescue of alpha-actin filament degradation (from 43 +/- 13% to 69 +/- 15%) at the same time. Treatment with an inhibitor for the ERK1/2 activator (PD-98059), however, did not induce a significant change in the activity of caspase 3 or the percentage of SMC alpha-actin filament coverage. These results suggest that p38 MAPK and caspase 3 may mediate stretch-dependent degradation of alpha-actin filaments in vascular SMCs. 相似文献
6.
In this study, we describe a bioreactor system to deliver controlled stretch protocols to bioengineered heart muscle (BEHMs) and test the system when streptomycin (an aminoglycoside antibiotic, which blocks stretch-activated channels) is either added to or excluded from the culture medium. Streptomycin is a very commonly used component of cell culture antibiotic-antimycotic media additives, so its effects on muscle development and functional response to mechanical signals in vitro is worthy of investigation. Our hypothesis is that BEHMs will not adapt to the applied mechanical stretch protocol when streptomycin is present in the culture medium, but will do so when streptomycin is excluded. Bioengineered heart muscles were formed by culturing primary neonatal cardiac myocytes in a fibrin gel using a method previously developed in our laboratory. A custom bioreactor system was designed using SolidWorks and structural components manufactured using fusion deposition modeling. We utilized a stretch protocol of 1 Hz, 10% strain for 7 d. BEHMs were stretched in the presence and absence of streptomycin. As controls, BEHMs were maintained in a cell culture incubator with and without streptomycin. The contractile properties of all BEHMs were evaluated to determine the active force. We were able to demonstrate compatibility of the bioreactor system with BEHMs and were able to stretch 58 constructs with zero incidence of failure. When the BEHMs were stretched in the absence of streptomycin, the active force increased from a mean value of 51.7 +/- 5.6 (N = 10) to 102.4 +/- 16.3 muN (N = 10), with p < 0.05. However, BEHMs that were stretched in the presence of streptomycin did not show any significant increase in active force generation. The average active force of BEHMs increased from a mean value of 57.6 +/- 10.2 (N = 10) to 91.4 +/- 19.8 muN (N = 10) when stretched in the presence of streptomycin. In this study, we demonstrate compatibility of the a bioreactor system with BEHMs, stability of the BEHMs in response to stretch protocols, and significant functional improvement in response to controlled stretch only when streptomycin is excluded from the culture medium, supporting our hypothesis. 相似文献
7.
The role of calcium in the response of cardiac muscle to stretch 总被引:9,自引:0,他引:9
This review focuses on the complex interactions between two major regulators of cardiac function; Ca2+ and stretch. Initial consideration is given to the effect of stretch on myocardial contractility and details the rapid and slow increases in contractility. These are shown to be related to two diverse changes in Ca2+ handling (enhanced myofilament Ca2+ sensitivity and increased intracellular Ca2+ transient, respectively). Interaction between stretch and Ca2+ is also demonstrated with respect to the rhythm of cardiac contraction. Stretch has been shown to alter action potential configuration, generate stretch-activated arrhythmias, and increase the rate of beating of the sino-atrial node. A variety of Ca(2+)-dependent mechanisms including attenuation of Ca2+ extrusion via Na+/Ca2+ exchange, Ca2+ entry through stretch-activated channels (SACs) and mobilisation of intracellular Ca2+ stores have been proposed to account for the effect of stretch on rhythm. Finally, the interaction between stretch and Ca2+ in the secretion of natriuretic peptides and onset of hypertrophy is discussed. Evidence is presented that Ca2+ (entering through L-type Ca2+ channels or SACs, or released from sarcoplasmic reticular stores) influences secretion of both atrial and B-type natriuretic peptide; there is data to support both positive and negative modulation by Ca2+. Ca2+ also appears to be important in the pathway that leads to expression of precursors of hypertrophic protein synthesis. In conclusion, two of the major regulators of cardiac muscle function, Ca2+ and stretch, interact to produce effects on the heart; in general these effects appear to be additive. 相似文献
8.
9.
C. A. Carrington W. Fisher M. J. White 《European journal of applied physiology and occupational physiology》1999,80(4):337-343
In this study, the influence of athletic training status and the contractile character of the active muscle on the magnitude of the pressor response (PR) to voluntary and electrically evoked isometric plantar flexion was investigated. Subjects were 10 sprint-trained athletes (sprint) (100-m, 200-m and 400-m) [mean (SD) age, 21 (2) years], 14 endurance trained athletes (distance) [22 (2) years] and 8 untrained men (control) [23 (3) years]. Twitch time to peak tension (TPT) in the sprint group [108 (7) ms] was significantly less (P<0.001) than that of the distance group [124 (10) ms]. During voluntary contraction, the mean change in systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (fc) was not significantly different between groups. During electrically evoked contractions, mean changes in SBP, DBP and fc were not significantly different between the sprint, distance and control groups. However, division of the sprint group into 400-m (sprint I) and 100/200-m athletes (sprint II) showed that an increase in DBP of 1.6 kPa (12 mm Hg) in sprint I was significantly less (P<0.05) than the 2.5 kPa (19 mm Hg) increase observed for both the distance and control groups. Prediction of the DBP response from our previously published relationship between TPT and DBP showed close agreement in all subject groups except sprint I; in these subjects the observed DBP response was only 55% of that predicted. Attenuation of the PR in the involuntary experiment suggests that some aspect of sprint training, but not endurance training, modifies the muscle afferent input to the PR in man. 相似文献
10.
Norihide Sugisaki Taku Wakahara Naokazu Miyamoto Koichiro Murata Hiroaki Kanehisa Yasuo Kawakami Tetsuo Fukunaga 《Journal of biomechanics》2010,43(14):2844-2847
The purpose of this study was to test the hypothesis that the musculotendon moment arm length is affected by the muscle anatomical cross-sectional area. The moment arm length of the triceps brachii (TB) muscle at 30°, 50°, 70°, 90°, 110° elbow flexion positions was measured in sagittal magnetic resonance images (MRI) of 18 subjects as the perpendicular distance between the center of the pulley of the humerus to the line through the center of the TB tendon. The moment arm increased as the elbow flexion angle decreased, from 1.74±0.13 cm at 110° to 2.39±0.14 cm at 30°. The maximal anatomical cross-sectional area of the TB muscle was significantly correlated with the moment arms at all joint positions (r=0.545–0.803, p<0.05). Furthermore, the circumference of the upper arm was also significantly correlated with the moment arms at all joint positions, except for 70° (r=0.504–0.702, p<0.05). These results indicate that the moment arm length of the TB muscle is affected by the muscle anatomical cross-sectional area. 相似文献
11.
12.
13.
Single unit recordings have been made from the muscle spindles of the extensor digitorum brevis I muscle of the chelonian emys orbicularis. The responses to ramp-type mechanical stretches (up to 5 mm s?1 velocity and up to 1.6 mm extension) were compared to those of spindles from other groups. It is found that the spindles have lower rates of firing than those from the other groups with the exception of the snake spindles. Generally the spindles behaved like the secondary ending of mammalian spindles or the tonic type of snake spindle in terms of their response to the velocity of stretch. The results are consistent with the view that the tonic response arises from intrafusal muscle fibres in which the sensory region has a structure which is fairly uniform and similar to that of the polar regions and not interrupted by accumulations of nuclei. 相似文献
14.
By means of extracellular recordings of action potentials the stretch responses of single neurons of Clarke's column were analysed. The neurons were monosynaptically activated from Ia afferents of both ipsilateral gastrocnemius muscles. When stretch cycles of more than 0.2 mm amplitude and frequencies above 2 Hz were applied to the gastrocnemius muscles, the discharging was found to cease during the period of stretch release, whereas the average discharge rate was found to increase. In the frequency range between 0.1 and 10 Hz a sinewave of stretch frequency — the response sinewave — fitted to the non-zero bins of cycle histograms described the stretch response at small and large amplitudes equally well. The amount of increase in the average firing rate corresponded quite well to the portion of the response sinewave below the zero discharge rate. This indicates that the occurance of discharge pauses and the relation of the average discharge rate to frequency and amplitude of stretch can be described successfully by a half-wave rectification of the response at zero discharge rate. If one regards the shape of cycle histograms to be a nearly sinusoidal modulation plus a non-linear clipping at zero the application of linear systems analysis is worthwhile in describing the response not only at very small amplitudes but in the whole range of muscle stretch. 相似文献
15.
16.
Ken Tokizawa Masaki Mizuno Yoshio Nakamura Isao Muraoka 《Journal of applied physiology》2004,97(5):1681-1685
We investigated whether selective muscle mechanoreceptor activation in the lower limb opposes arm muscle metaboreceptor activation-mediated limb vasoconstriction. Seven subjects completed two trials: one control trial and one stretch trial. Both trials included 2 min of handgrip and 2 min of posthandgrip exercise muscle ischemia (PEMI). In the stretch trial, a 2-min sustained triceps surae stretch, by brief passive dorsiflexion of the right foot, was performed simultaneously during PEMI. Mean arterial pressure, heart rate, and forearm blood flow (FBF) in the nonexercised arm and forearm vascular conductance (FVC) in the nonexercised arm were measured. During PEMI in the control trial, mean arterial pressure was significantly greater and FBF and FVC were significantly lower than baseline values (P < 0.05 for each). In contrast, FBF and FVC during PEMI in the stretch trial exhibited different responses than in the control trial. FBF and FVC were significantly greater in the stretch trial than in the control trial (FBF, 5.5 +/- 0.4 vs. 3.8 +/- 0.4 ml x 100 ml(-1) x min(-1); FVC, 0.048 +/- 0.004 vs. 0.033 +/- 0.003 unit, respectively; P < 0.05). These results indicate that passive triceps surae stretch can inhibit vasoconstriction in the nonexercised forearm mediated via muscle metaboreceptor activation in the exercised arm. 相似文献
17.
Edith Ribot-Ciscar Jane E Butler Christine K Thomas 《Journal of applied physiology》2003,94(6):2358-2367
One way to improve the weak triceps brachii voluntary forces of people with chronic cervical spinal cord injury may be to excite the paralyzed or submaximally activated fraction of muscle. Here we examined whether elbow extensor force was enhanced by vibration (80 Hz) of the triceps or biceps brachii tendons at rest and during maximum isometric voluntary contractions (MVCs) of the elbow extensors performed by spinal cord-injured subjects. The mean +/- SE elbow extensor MVC force was 22 +/- 17.5 N (range: 0-23% control force, n = 11 muscles). Supramaximal radial nerve stimuli delivered during elbow extensor MVCs evoked force in six muscles that could be stimulated selectively, suggesting potential for force improvement. Biceps vibration at rest always evoked a tonic vibration reflex in biceps, but extension force did not improve with biceps vibration during triceps MVCs. Triceps vibration induced a tonic vibration reflex at rest in one-half of the triceps muscles tested. Elbow extensor MVC force (when >1% of control force) was enhanced by vibration of the triceps tendon in one-half of the muscles. Thus triceps, but not biceps, brachii tendon vibration increases the contraction strength of some partially paralyzed triceps brachii muscles. 相似文献
18.
19.
History-dependence of isometric muscle force: effect of prior stretch or shortening amplitude 总被引:1,自引:0,他引:1
It is well-recognised that steady-state isometric muscle force is decreased following active shortening (force depression, FD) and increased following active stretch (force enhancement, FE). It has also been demonstrated that passive muscle force is increased following active stretch (passive FE). Several studies have reported that FD increases with shortening amplitude and that FE and passive FE increase with stretch amplitude. Here, we investigate whether these trends continue with further increases in shortening or stretch amplitude. Experiments were performed using in situ cat soleus muscles (n=8 for FD; n=7 for FE and passive FE). FD, FE and passive FE were measured after shortening or stretch contractions that covered as wide a range of amplitudes as practically possible without damaging the muscles. FD increased approximately linearly with shortening amplitude, over the full range of amplitudes investigated. This is consistent with the hypothesis that FD arises from a stress-induced inhibition of crossbridges. FE increased with stretch amplitude only up to a point, and then levelled off. Passive FE, and the transient increase in force at the end of stretch, showed relationships to stretch amplitude that were qualitatively very similar to the relationship for FE, increasing only until the same critical stretch amplitude had been reached. We conclude that FE and passive FE do not increase with stretch amplitude under all circumstances. This finding has important consequences for determining the mechanisms underlying FE and passive FE because any mechanism that is proposed to explain them must be able to predict it. 相似文献
20.
Force depression following muscle shortening was investigated in cat soleus (n=6) at 37 degrees C for a variety of contractile conditions with the aim to test the hypotheses that force depression was independent of the speed of shortening and was directly related to the mechanical work produced by the muscle during shortening. Force depression was similar for tests in which the mechanical work performed by the muscle was similar, independent of the speed of shortening (range of speeds: 4-256mm/s). On the other hand, force depression varied significantly at a given speed of shortening but different amounts of mechanical work, supporting the hypothesis that force depression was not speed - but work dependent. The variations in the mechanical work produced by the muscle during shortening accounted for 87-96% of the variance observed in the force depression following shortening further supporting the idea that the single scalar variable work accounts for most of the observed loss in isometric force after shortening. The results of the present study are also in agreement with the notion that the mechanism underlying force depression might be associated with an inhibition of cross-bridge attachments in the overlap zone formed during the shortening phase, as proposed previously (Herzog and Leonard, 1997. Journal of Bimechanics 30 (9), 865-872; Maréchal and Plaghki, 1979. 相似文献