首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium uptake by guard cells represents part of the osmotic motor which drives stomatal opening. Patch-clamp measurements have identified inward rectifying K+ channels capable of mediating K+ uptake in guard cells and various other plant cell types. Here we report the molecular cloning and characterization of a voltage-dependent K+ channel (KST1) from potato (Solanum tuberosum L.) guard cells. In situ hybridization shows expression of kst1 in guard cells. Two-electrode voltage-clamp and patch-clamp studies of the gene product after cRNA injection into Xenopus oocytes identified KST1 as a slowly activating, voltage-dependent, inward rectifying K+ channel. The single channel current voltage curve was linear in the range -160 to +20 mV, with a deduced single channel conductance of 7 pS in symmetrical 100 mM K+. This channel type, modulated by pH changes within the physiological range, required ATP for activation. In line with the properties of a K(+)-selective channel, KST1 was permeable to K+, Rb+ and NH4+ and excluded Na+ and Li+. Cs+ at submillimolar concentrations blocked the channel in a voltage-dependent manner. Related studies on potato guard cell protoplasts confirmed the biophysical characteristics of the kst1 gene product (KST1) in the heterologous expression system. Therefore, KST1 represents a major K+ uptake channel in potato guard cells.  相似文献   

2.
The contribution of axonal activity to the ionic currents which generate bursting pacemaker activity was studied by using the two-electrode voltage-clamp technique in Aplysia bursting neuron somata in conjunction with intraaxonal voltage recordings. Depolarizing voltage-clamp pulses applied to bursting cell somata triggered axonal action potentials. The voltage-clamp current recording exhibited transient inward current "notches" corresponding to each of the axonal spikes. The addition of 50 microM tetrodotoxin (TTX) to the bathing medium blocked the fast axonal spikes and current notches, revealing a slower axonal spike which was blocked by the replacement of external Ca2+ with Co2+. The inward current evoked by applying a depolarizing voltage-clamp pulse in the soma is distorted by the occurrence of the axonal Ca2+ spike. Elimination of the axonal spike, by injecting hyperpolarizing current into the axon, changes both the time course and the magnitude of the inward current. The axonal Ca2+ spikes are followed by a series of Ca2+-dependent afterpotentials: a rapid postspike hyperpolarization, a depolarizing afterpotential (DAP) and, finally, a long-lasting postburst hyperpolarization. The long-lasting hyperpolarization is not blocked by 50 mM external tetraethyl ammonium, an effective blocker of Ca2+-activated K+ current [IK(Ca)], and does not appear to reverse at EK. Hence, the axonal long-lasting hyperpolarization may not be due to IK(Ca). Somatic voltage-clamp pulses in bursting neurons are followed by a slow inward tail current, which is sometimes coincident with a DAP in the axon. In some cells, the amplitude of the slow inward tail current is greatly reduced if axonal spikes and DAPs are prevented by hyperpolarization of the axon, while, in other cells, elimination of axonal activity has little effect. Therefore, the slow inward tail current is not necessarily an artifact of poor voltage-clamp control over the axonal membrane potential but probably results from the activation of an ionic conductance mechanism located partly in the axon and partly in the soma.  相似文献   

3.
The membrane of immature Xenopus oocytes is known to possess a peculiar type of sodium channels, which are not activatable unless the membrane has been depolarized for some time. Once induced by a long-lasting depolarization, the channels behave like voltage-dependent channels, but they slowly activate and apparently do not inactivate. In addition, these channels were shown to be insensitive to the toxins classically used to inhibit the voltage-dependent Na+ channels. The effects of lidocaine on these slow Na+ channels were investigated using current-and voltage-clamped oocytes. Lidocaine reversibly blocked the channels when they were in their open configuration, but not when the channels were in their closed state. The concentration of lidocaine required for half-inhibition of the slow inward current was 270 +/- 67 micromol/l. The current/voltage relationships indicated that lidocaine blocked the sodium current (inward as well as outward) for all the potentials investigated. At a concentration of 0.3 mmol/l, lidocaine caused a shift of 5 +/- 1 mV of the activation curve. This suggests that the gating properties of the channels were alterated. The effect of lidocaine was found to be non-selective since at least two other channels were affected by the drug, namely the voltage-dependent calcium channels and the monovalent non-selective channels.  相似文献   

4.
Calcium currents in a fast-twitch skeletal muscle of the rat   总被引:9,自引:5,他引:4       下载免费PDF全文
Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially obscured by nonlinear charge movement. Nonetheless, at physiological temperatures, the rate of calcium channel activation in rat skeletal muscle is about five times faster than activation of calcium channels in frog muscle. This pathway may be an important source of calcium entry in mammalian muscle.  相似文献   

5.
Whole-cell membrane currents were measured in isolated cat ventricular myocytes using a suction-electrode voltage-clamp technique. An inward-rectifying current was identified that exhibited a time-dependent activation. The peak current appeared to have a linear voltage dependence at membrane potentials negative to the reversal potential. Inward current was sensitive to K channel blockers. In addition, varying the extracellular K+ concentration caused changes in the reversal potential and slope conductance expected for a K+ current. The voltage dependence of the chord conductance exhibited a sigmoidal relationship, increasing at more negative membrane potentials. Increasing the extracellular K+ concentration increased the maximal level of conductance and caused a shift in the relationship that was directly proportional to the change in reversal potential. Activation of the current followed a monoexponential time course, and the time constant of activation exhibited a monoexponential dependence on membrane potential. Increasing the extracellular K+ concentration caused a shift of this relationship that was directly proportional to the change in reversal potential. Inactivation of inward current became evident at more negative potentials, resulting in a negative slope region of the steady state current-voltage relationship between -140 and -180 mV. Steady state inactivation exhibited a sigmoidal voltage dependence, and recovery from inactivation followed a monoexponential time course. Removing extracellular Na+ caused a decrease in the slope of the steady state current-voltage relationship at potentials negative to -140 mV, as well as a decrease of the conductance of inward current. It was concluded that this current was IK1, the inward-rectifying K+ current found in multicellular cardiac preparations. The K+ and voltage sensitivity of IK1 activation resembled that found for the inward-rectifying K+ currents in frog skeletal muscle and various egg cell preparations. Inactivation of IK1 in isolated ventricular myocytes was viewed as being the result of two processes: the first involves a voltage-dependent change in conductance; the second involves depletion of K+ from extracellular spaces. The voltage-dependent component of inactivation was associated with the presence of extracellular Na+.  相似文献   

6.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels are important for rhythmic activity in the brain and in the heart. In this study, using ionic and gating current measurements, we show that cloned spHCN channels undergo a hysteresis in their voltage dependence during normal gating. For example, both the gating charge versus voltage curve, Q(V), and the conductance versus voltage curve, G(V), are shifted by about +60 mV when measured from a hyperpolarized holding potential compared with a depolarized holding potential. In addition, the kinetics of the tail current and the activation current change in parallel to the voltage shifts of the Q(V) and G(V) curves. Mammalian HCN1 channels display similar effects in their ionic currents, suggesting that the mammalian HCN channels also undergo voltage hysteresis. We propose a model in which HCN channels transit between two modes. The voltage dependence in the two modes is shifted relative to each other, and the occupancy of the two modes depends on the previous activation of the channel. The shifts in the voltage dependence are fast (tau approximately 100 ms) and are not accompanied by any apparent inactivation. In HCN1 channels, the shift in voltage dependence is slower in a 100 mM K extracellular solution compared with a 1 mM K solution. Based on these findings, we suggest that molecular conformations similar to slow (C-type) inactivation of K channels underlie voltage hysteresis in HCN channels. The voltage hysteresis results in HCN channels displaying different voltage dependences during different phases in the pacemaker cycle. Computer simulations suggest that voltage hysteresis in HCN channels decreases the risk of arrhythmia in pacemaker cells.  相似文献   

7.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are activated by membrane hyperpolarizations that cause an inward movement of the positive charges in the fourth transmembrane domain (S4), which triggers channel opening. The mechanism of how the motion of S4 charges triggers channel opening is unknown. Here, we used voltage clamp fluorometry (VCF) to detect S4 conformational changes and to correlate these to the different activation steps in spHCN channels. We show that S4 undergoes two distinct conformational changes during voltage activation. Analysis of the fluorescence signals suggests that the N-terminal region of S4 undergoes conformational changes during a previously characterized mode shift in HCN channel voltage dependence, while a more C-terminal region undergoes an additional conformational change during gating charge movements. We fit our fluorescence and ionic current data to a previously proposed 10-state allosteric model for HCN channels. Our results are not compatible with a fast S4 motion and rate-limiting channel opening. Instead, our data and modeling suggest that spHCN channels open after only two S4s have moved and that S4 motion is rate limiting during voltage activation of spHCN channels.  相似文献   

8.
Ionic conductances of squid giant fiber lobe neurons   总被引:6,自引:3,他引:3       下载免费PDF全文
The cell bodies of the neurons in the giant fiber lobe (GFL) of the squid stellate ganglion give rise to axons that fuse and thereby form the third-order giant axon, whose initial portion functions as the postsynaptic element of the squid giant synapse. We have developed a preparation of dissociated, cultured cells from this lobe and have studied the voltage-dependent conductances using patch-clamp techniques. This system offers a unique opportunity for comparing the properties and regional differentiation of ionic channels in somatic and axonal membranes within the same cell. Some of these cells contain a small inward Na current which resembles that found in axon with respect to tetrodotoxin sensitivity, voltage dependence, and inactivation. More prominent is a macroscopic inward current, carried by Ca2+, which is likely to be the result of at least two kinetically distinct types of channels. These Ca channels differ in their closing kinetics, voltage range and time course of activation, and the extent to which their conductance inactivates. The dominant current in these GFL neurons is outward and is carried by K+. It can be accounted for by a single type of voltage-dependent channel. This conductance resembles the K conductance of the axon, except that it partially inactivates during relatively short depolarizations. Ensemble fluctuation analysis of K currents obtained from excised outside-out patches is consistent with a single type of K channel and yields estimates for the single channel conductance of approximately 13 pS, independently of membrane potential. A preliminary analysis of single channel data supports the conclusion that there is a single type of voltage-dependent, inactivating K channel in the GFL neurons.  相似文献   

9.
Frog skeletal muscle has a K+ channel called the inward rectifier, which passes inward current more readily than outward current. Gay and Stanfield (1977) described a voltage-dependent block of inward K+ currents through the inward rectifier by external Cs+ in frog muscle. Here, frog single muscle fibers were voltage clamped using the vaseline-gap voltage-clamp technique to study the effect of external [K+] on the voltage-dependent block of inward K+ currents through the inward rectifier by external Cs+. The block of inward K+ currents through the channel by external Cs+ was found to depend on external [K+], such that increasing the external concentration of the permeant ion K+ potentiated the block produced by the impermeant external Cs+. These findings are not consistent with a one-ion channel model for the inward rectifier. The Eyring rate theory formalism for channels, viewed as single-file multi-ion pores (Hille and Schwarz, 1978), was used to develop a two-site multi-ion model for the inward rectifier. This model successfully reproduced the experimentally observed potentiation of the Cs+ block of the channel by external K+, thus lending further support to the view of the inward rectifier as a multi-ion channel.  相似文献   

10.
Ca2+ current and tension have been simultaneously recorded from single twitch fibres of the semi-tendinosus of Rana esculenta in a medium containing a physiological Ca2+ concentration (1.8 mM). Under appropriate conditions it can be shown that tension develops in two phases. The first is rapid and reaches its maximum before activation of the inward Ca2+ current. The second phase is slower and with a time course which appears to be correlated with that of the inward current. Nifedipine, a specific Ca2+ channel inhibitor greatly reduced ICa2+ and the slower component of tension. Bay K8644 a Ca2+ channel activator, which has receptors on T-tubule, increased ICa2+ and the slow component of tension. These results indicate that a slow component of skeletal muscle contraction is related to the inward Ca2+ current flowing through dihydropyridine sensitive voltage-dependent Ca2+ channels.  相似文献   

11.
Smooth muscle cells normally do not possess fast Na+ channels, but inward current is carried through two types of Ca2+ channels: slow (L type) Ca2+ channels and fast (T type) Ca2+ channels. Whole-cell voltage clamp was done on single smooth muscle cells isolated from the longitudinal layer of the 18-day pregnant rat uterus. Depolarizing pulses, applied from a holding potential of -90 mV, evoked two types of inward current, fast and slow. The fast inward current decayed within 30 ms, depended on [Na]o, and was inhibited by tetrodotoxin (TTX) (K0.5 = 27 nM). The slow inward current decayed slowly, was dependent on [Ca]o (or Ba2+), and was inhibited by nifedipine. These results suggest that the fast inward current is a fast Na+ channel current and that the slow inward current is a Ca2+ slow channel current. A fast-inactivating Ca2+ channel current was not evident. We conclude that the ion channels that generate inward currents in pregnant rat uterine cells are TTX-sensitive fast Na+ channels and dihydropyridine-sensitive slow Ca2+ channels. The number of fast Na+ channels increased during gestation. The averaged current density increased from 0 on day 5, to 0.19 on day 9, to 0.56 on day 14, to 0.90 on day 18, and to 0.86 pA/pF on day 21. This almost linear increase occurs because of an increase in the fraction of cells that possess fast Na+ channels. The Ca2+ channel current density was also higher during the latter half of gestation. These results indicate that the fast Na+ channels and Ca2+ slow channels in myometrium become more numerous as term approaches, and we suggest that the fast Na+ current may be involved in spread of excitation. Isoproterenol (beta-agonist) did not affect either ICa(s) or INa(f), whereas Mg2+ (K0.5 = 12 mM) and nifedipine (K0.5 = 3.3 nM) depressed ICa(s). Oxytocin had no effect on INa(f) and actually depressed ICa(s) to a small extent. Therefore, the tocolytic action of beta-agonists cannot be explained by an inhibition of ICa(s), whereas that of Mg2+ can be so explained. The stimulating action of oxytocin on uterine contractions cannot be explained by a stimulation of ICa(s).  相似文献   

12.
A classical voltage-sensitive channel is tension sensitive—the kinetics of Shaker and S3–S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982–2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193–208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically—normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize, therefore, that stretch-induced bilayer decompression facilitates an in-plane expansion of the protein in both activation and inactivation. Dynamic structural models of this class of channels will need to take into account the inherent mechanosensitivity of voltage-dependent gating.  相似文献   

13.
The purpose of our work was to investigate the functioning of K+ channels in protoplasts of laticifers of Hevea brasiliensis Muell. Arg., anastomosed into a network devoid of large central vacuoles, after tapping stress. Physiological functions such as proton pump activity and uptake of sucrose (a rubber precursor) were maintained, when the voltage-clamp method was used in vivo to record the whole-cell K+ current during the stress response.
A time-dependent inward current was induced in 50 m M KCl and rapidly inactivated (about 100 ms). The activation potential of this inward K+ channel was not closely dependent on Ek. This would be coherent with the 'valve model' of Schroeder and Fang (1991, Proc. Natl. Acad. Sci. USA 88: 11583–11587) involving the activation of a H+-pump accounting for the K+ uptake observed in laticiferous cells under stress. The activation half-time of outward currents was clearly voltage dependent: from about 350 to 60 ms for 125 and 155 mV, respectively. Time-dependent outward current sensitivity to 5 m M BaCl2 or CaCl2 or to 5 μ M Erythrosin B showed that the K+ channels could be Ca2+-dependent. Because of the positive values of the activation potential of the outward current, the possibility opens that an action potential exists, these cells being specialized for stress response.  相似文献   

14.
Slow components of potassium tail currents in rat skeletal muscle   总被引:2,自引:2,他引:0       下载免费PDF全文
The kinetics of potassium tail currents have been studied in the omohyoid muscle of the rat using the three-microelectrode voltage-clamp technique. The currents were elicited by a two-pulse protocol in which a conditioning pulse to open channels was followed by a test step to varying levels. The tail currents reversed at a single well-defined potential (VK). At hyperpolarized test potentials (-100 mV and below), tail currents were inward and exhibited two clearly distinguishable phases of decay, a fast tail with a time constant of 2-3 ms and a slow tail with a time constant of approximately 150 ms. At depolarized potentials (-60 mV and above), tail currents were outward and did not show two such easily separable phases of decay, although a slow kinetic component was present. The slow kinetic phase of outward tail currents appeared to be functionally distinct from the slow inward tail since the channels responsible for the latter did not allow significant outward current. Substitution of Rb for extracellular K abolished current through the anomalous (inward-going) rectifier and at the same time eliminated the slow inward tail, which suggests that the slow inward tail current flows through anomalous rectifier channels. The amplitude of the slow inward tail was increased and VK was shifted in the depolarizing direction by longer conditioning pulses. The shift in VK implies that during outward currents potassium accumulates in a restricted extracellular space, and it is suggested that this excess K causes the slow inward tail by increasing the inward current through the anomalous rectifier. By this hypothesis, the tail current slowly decays as K diffuses from the restricted space. Consistent with such a hypothesis, the decay of the slow inward tail was not strongly affected by changing temperature. It is concluded that a single delayed K channel is present in the omohyoid. Substitution of Rb for K has little effect on the magnitude or time course of outward current tails, but reduces the magnitude and slows the decay of the fast component of inward tails. Both effects are consistent with a mechanism proposed for squid giant axon (Swenson and Armstrong, 1981): that (a) the delayed potassium channel cannot close while Rb is inside it, and (b) that Rb remains in the channel longer than K.  相似文献   

15.
Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is proposed for the DHP-sensitive Ca channel, which pictures the normal pathway of activation of the calcium channel as two voltage-dependent steps in sequence, plus a voltage-independent step which is rate limiting. The model reproduced well the fast and slow gating models of the calcium channel, and the effects of conditioning pulses. It is possible that the voltage-sensitive gating transitions of the DHP receptor, which occur early in the calcium channel activation sequence, could underlie the role of the voltage sensor and yield the rapid excitation-contraction coupling in skeletal muscle, through either electrostatic or allosteric linkage to the ryanodine receptors/calcium release channels.  相似文献   

16.
We have investigated the action of the recombinant neurotoxins, named Hk7a and Hk2a, whose amino acid sequences differ only in two positions, isolated from the sea anemone Anthopleura sp., on neuronal sodium currents using the whole-cell voltage-clamp techniques. The rat cerebral cortical neurons in primary culture were used for this study. In our experiments, these cells all express tetrodotoxin-sensitive (TTX-S) sodium currents. Under the voltage-clamp condition, application of Hk7a and Hk2a reduced the sodium channel current amplitude and shifted the voltage dependence of activation to more positive potential; while Hk7a produced no significant effect on the voltage at which 50% of the channels were inactivated, Hk2a caused profound hyperpolarizing shift of the voltage-dependent inactivation. Also, both Hk7a and Hk2a increased the time course of recovery from inactivation. In kinetic studies, whereas application of Hk2a slows the time to peak of voltage-gated sodium channel, the time course of fast and slow inactivating component, no significant effect was observed in Hk7a. These results suggested that the difference of key amino acid between Hk7a and Hk2a might contribute to their different action; therefore, they could be used as pharmacological tool to study the structure and function of voltage-gated sodium channel. Hui Xiang, Wucheng Tao, Lei Wang, and Fang Wang have contributed equally to this work.  相似文献   

17.
KV11.1 voltage-gated K+ channels are noted for unusually slow activation, fast inactivation, and slow deactivation kinetics, which tune channel activity to provide vital repolarizing current during later stages of the cardiac action potential. The bulk of charge movement in human ether-a-go-go-related gene (hERG) is slow, as is return of charge upon repolarization, suggesting that the rates of hERG channel opening and, critically, that of deactivation might be determined by slow voltage sensor movement, and also by a mode-shift after activation. To test these ideas, we compared the kinetics and voltage dependence of ionic activation and deactivation with gating charge movement. At 0 mV, gating charge moved ∼threefold faster than ionic current, which suggests the presence of additional slow transitions downstream of charge movement in the physiological activation pathway. A significant voltage sensor mode-shift was apparent by 24 ms at +60 mV in gating currents, and return of charge closely tracked pore closure after pulses of 100 and 300 ms duration. A deletion of the N-terminus PAS domain, mutation R4AR5A or the LQT2-causing mutation R56Q gave faster-deactivating channels that displayed an attenuated mode-shift of charge. This indicates that charge movement is perturbed by N- and C-terminus interactions, and that these domain interactions stabilize the open state and limit the rate of charge return. We conclude that slow on-gating charge movement can only partly account for slow hERG ionic activation, and that the rate of pore closure has a limiting role in the slow return of gating charges.  相似文献   

18.
We have studied the effect of ascorbic acid on voltage-dependent calcium channels in pancreatic beta cells. Using the whole-cell and perforated-patch variants of the patch clamp technique to record calcium tail currents, we have shown that the slowly deactivating (SD) calcium channel, which is similar to the T-type channel in other cells, is inhibited in a voltage-dependent manner by ascorbic acid (AA). The other channels that carry inward current in beta cells, FD calcium channels and sodium channels, are unaffected by AA. Ascorbic acid causes a voltage-dependent decrease in the magnitude of the SD channel conductance which can be explained by the hypothesis that approximately 50-60% of the channels have their voltage dependence shifted by approximately 62 mV in the depolarizing direction. Thus, ascorbate appears to modify only a fraction of the SD channels. The activation kinetics of the ascorbate-modified channels are slower than control channels in a manner that is consistent with this hypothesis. Deactivation and inactivation kinetics are unaffected by ascorbate. These effects of ascorbate require metal ions, and it appears that some of the activity of ascorbate is due to a product of its metal catalyzed oxidation, perhaps dehydroascorbate.  相似文献   

19.
The molecular processes associated with voltage-dependent opening and closing (gating) of ion channels were investigated using a new preparation from plant cells, i.e., voltage and calcium-activated ion channels in radish root vacuoles. These channels display a main single channel conductance of approximately 90 pS and are characterized by long activation times lasting several hundreds of milliseconds. Here, we demonstrate that these channels have a second kinetically distinct activation mode which is characterized by even longer activation times. Different membrane potential protocols allowed to switch between the fast and the slow mode in a controlled and reversible manner. At transmembrane potentials of -100 mV, the ratio between the fast and slow activation time constant was around 1:5. Correspondingly, activation times lasting several seconds were observed in the slow mode. The molecular process controlling fast and slow activation may represent an effective modulator of voltage-dependent gating of ion channels in other plant and animal systems.  相似文献   

20.
S4 movement in a mammalian HCN channel   总被引:6,自引:0,他引:6  
Hyperpolarization-activated, cyclic nucleotide-gated ion channels (HCN) mediate an inward cation current that contributes to spontaneous rhythmic firing activity in the heart and the brain. HCN channels share sequence homology with depolarization-activated Kv channels, including six transmembrane domains and a positively charged S4 segment. S4 has been shown to function as the voltage sensor and to undergo a voltage-dependent movement in the Shaker K+ channel (a Kv channel) and in the spHCN channel (an HCN channel from sea urchin). However, it is still unknown whether S4 undergoes a similar movement in mammalian HCN channels. In this study, we used cysteine accessibility to determine whether there is voltage-dependent S4 movement in a mammalian HCN1 channel. Six cysteine mutations (R247C, T249C, I251C, S253C, L254C, and S261C) were used to assess S4 movement of the heterologously expressed HCN1 channel in Xenopus oocytes. We found a state-dependent accessibility for four S4 residues: T249C and S253C from the extracellular solution, and L254C and S261C from the internal solution. We conclude that S4 moves in a voltage-dependent manner in HCN1 channels, similar to its movement in the spHCN channel. This S4 movement suggests that the role of S4 as a voltage sensor is conserved in HCN channels. In addition, to determine the reason for the different cAMP modulation and the different voltage range of activation in spHCN channels compared with HCN1 channels, we constructed a COOH-terminal-deleted spHCN. This channel appeared to be similar to a COOH-terminal-deleted HCN1 channel, suggesting that the main functional differences between spHCN and HCN1 channels are due to differences in their COOH termini or in the interaction between the COOH terminus and the rest of the channel protein in spHCN channels compared with HCN1 channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号