首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone loss is a common complication in individuals with sickle cell disease (SCD). The mechanism(s) of bone loss in SCD subjects has not been fully investigated, and there are no targeted therapies to prevent or treat compromised bone health in this population. Recent studies showed that depletion of gut microbiota with antibiotics significantly reduced the number of aged neutrophils, thereby dramatically improved the inflammation-related organ damages in SCD mice. Since neutrophils, abundantly present in bone marrow (BM), regulate bone cells, and BM neutrophils, induced by inflammatory cytokines, are associated with a low number of osteoblasts (OBs), we hypothesize that neutrophil aging in the BM of SCD mice impairs OB function. Flow cytometry analysis showed BM neutrophil aging was significantly increased in SCD mice that was reduced with antibiotic treatment. In vitro co-culture of calvarial OBs from control (Ctrl) mice with BM neutrophils from Ctrl or SCD mice showed that BM neutrophils from SCD mice inhibit OB function but was rescued when neutrophils were from antibiotic-treated SCD mice. In summary, there is an accumulation of aged neutrophils in BM from SCD mice that may contribute to impaired OB function, and antibiotic treatment is able to partially rescue impaired OB function by decreasing neutrophil aging in the BM of SCD mice.  相似文献   

2.
3.
Accelerated glycolysis in hypertrophied hearts may be a compensatory response to reduced energy production from long-chain fatty acid oxidation with 5'-AMP-activated protein kinase (AMPK) functioning as a cellular signal. Therefore, we tested the hypothesis that enhanced fatty acid oxidation improves energy status and normalizes AMPK activity and glycolysis in hypertrophied hearts. Glycolysis, fatty acid oxidation, AMPK activity, and energy status were measured in isolated working hypertrophied and control hearts from aortic-constricted and sham-operated male Sprague-Dawley rats. Hearts from halothane (3-4%)-anesthetized rats were perfused with KH solution containing either palmitate, a long-chain fatty acid, or palmitate plus octanoate, a medium-chain fatty acid whose oxidation is not impaired in hypertrophied hearts. Compared with control, fatty acid oxidation was lower in hypertrophied hearts perfused with palmitate, whereas it increased to similar values in both groups with octanoate plus palmitate. Glycolysis was accelerated in palmitate-perfused hypertrophied hearts and was normalized in hypertrophied hearts by the addition of octanoate. AMPK activity was increased three- to sixfold with palmitate alone and was reduced to control values by octanoate plus palmitate. Myocardial energy status improved with the addition of octanoate but did not differ between groups. Our findings, particularly the correspondence between glycolysis and AMPK activity, provide support for the view that activation of AMPK is responsible, in part, for the acceleration of glycolysis in cardiac hypertrophy. Additionally, they indicate myocardial AMPK is activated by energy state-independent mechanisms in response to pressure overload, demonstrating AMPK is more than a sensor of the heart's energy status.  相似文献   

4.
5.
Human hereditary hemochromatosis is a disorder of iron homeostasis characterized by increased absorption of iron and its deposition in parenchymal organs. The maintenance of iron homeostasis is regulated by molecules involved in the absorption, transport, storage and redox of iron. The potential of hematopoietic stem cell therapy for liver diseases has been studied in some experimental animal models. Our objective was to evaluate the effect of bone marrow transplantation from wild type mice on the status of iron overload in Hfe knockout hemochromatotic mice (Hfe(-/-)). The transplanted cells were detected in the liver (11% of the total cells) and characterized as hepatocytes and myofibroblasts. They were also detected in the duodenum and characterized as myofibroblasts. The iron content in the Hfe(-/-) mice descended 2.9-fold in the liver and 2.4-fold in the duodenum 6 months after transplantation. Non-significant changes of relative mRNA abundance of genes of iron metabolism were observed in the liver and duodenum of Hfe(-/-) transplanted mice. At 6 months after transplantation the proportion of Hfe mRNA in Hfe(-/-) mice reached 3.8% of the levels in wild type mice in the liver and 1.6% in the duodenum. In conclusion, adult stem cells from bone marrow transplant were able to differentiate into hepatocytes and myofibroblasts in hemochromatotic mice. Bone marrow transplantation assisted in reducing the iron overload in this murine model of hemochromatosis. These findings might contribute to the knowledge of pathways involved in the regulatory system of iron homeostasis.  相似文献   

6.
Early activation of p160ROCK by pressure overload in rat heart   总被引:2,自引:0,他引:2  
We investigated the effects of acutepressure overload on activation of p160ROCK in ratmyocardium. Constriction of transverse aorta, controlled to increasepeak systolic pressure of ascending aorta by ~40 mmHg, induced arapid association of RhoA with Dbl-3 and p160ROCK. Thebinding of p160ROCK to RhoA was rapidly increased, peakingat 30 min (~3.5-fold), but reduced to lower levels (~1.9-fold) by60 min of pressure overload. The activity of immunoprecipitatedp160ROCK toward myosin light chain increased ~2.5-foldwithin 10 min but decreased to lower levels (~1.6-fold) after 60 minof pressure overload. Confocal microscopic analysis indicated thatpressure overload induced the formation of aggregates ofp160ROCK and RhoA along the longitudinal axis of cardiacmyocytes. Immunoelectron microscopic analysis showed that pressureoverload induced the association of p160ROCK and RhoA toZ-line, T-tubule, and subsarcolemmal areas. The rapid activation ofp160ROCK by pressure overload and its aggregation insubcellular structures involved in transmission of mechanical forcesuggest a role for this enzyme in the mechanobiochemical transductionin the myocardium.

  相似文献   

7.
Early activation of p160ROCK by pressure overload in rat heart   总被引:1,自引:0,他引:1  
We investigated the mechanisms underlying regulation of contraction with measurements of isometric force and intracellular Ca2+ concentration ([Ca2+]i) in NIH 3T3 fibroblast reconstituted into fibers with the use of a collagen matrix. Treatment with the major phospholipids, neurotransmitters, and growth factors had little effect on baseline isometric force. However, U-46619, a thromboxane A2 (TxA2) analog, increased force and [Ca2+]i; EC50 values were 11.0 and 10.0 nM, respectively. The time courses were similar to those induced by calf serum (CS), and the maximal force was 65% of a CS-mediated contraction. The selective TxA2 receptor antagonist SQ-29548 abolished the U-46619-induced responses. CS-induced contractions are dependent on an intracellular Ca2+ store function; however, the U-46619 response depended not only on intracellular Ca2+ stores, but also on Ca2+ influx from the extracellular medium. Inhibition of Rho kinase suppressed U-46619- and CS-induced responses; in contrast, inhibition of C kinase (PKC) reduced only the U-46619 response. Moreover, addition of U-46619 to a CS contracture enhanced force and [Ca2+]i responses. These results indicate that U-46619-induced responses involve PKC and Rho kinase pathways, in contrast to activation by CS. Thus TxA2 may have a role in not only the initial step of wound repair as an activator of blood coagulation, but also in fibroblast contractility in later stages. collagen matrix; signal transduction; wound repair  相似文献   

8.
9.
Left ventricular hypertrophy with adequate wall thickness, preserved adult phenotype and extracellular matrix may be useful in the prevention of heart failure. Because activation of subtype 1 of angiotensin II (AT1) receptors is thought to be involved in the hypertrophic response of cardiomyocytes, we tested the potential of systemic AT1 blockade to modify the development of left ventricular hypertrophy due to pressure overload.Sham-operated rats and rats with ascending aorta constriction were treated with losartan (30 mg/kg/day) for 8 weeks. Left ventricular geometry, dynamics of isovolumic contractions, hydroxyproline concentration as well as myosin isozymes (marker of fetal phenotype) were assessed. Rats with aortic constriction exhibited a marked increase in left ventricular weight and the diastolic pressure-volume relationship was shifted to smaller volumes. An enlarged ventricular pressure-volume area and increased (p < 0.05) peak values of +dP/dtmax and -dP/dtmax demonstrated an enhanced overall ventricular performance. Signs of congestive heart failure were not apparent. In contrast, parameters of myocardial fimction (normalized length-stress area, +d/dtmax and -d/dtmax) were depressed (p < 0.05), indicating an impaired myocardial contractility. The hydroxyproline concentration remained unaltered. However, the proportion of -myosin heavy chains (NMC) was increased (p < 0.05). Administration of losartan decreased (p < 0.05) blood pressure and body weight in sham operated and pressure overloaded rats. By contrast, neither the concentric left ventricular hypertrophy or depressed myocardial function nor the increased -MHC expression were significantly altered. Thus, activation of AT1 receptors appears not to be involved in the initial expression of the fetal phenotype of pressure overloaded heart which may be responsible for the progressive functional deterioration of the hypertrophied ventricle.  相似文献   

10.
Patients with aortic stenosis develop various degrees of myocardial hypertrophy and heart failure (HF) despite comparable transvalvular gradients. An important element in the transition from compensated hypertrophy to HF is dilatation of the left ventricle (LV). The molecular pathology associated with LV dilatation and development of HF is not known. Thus, we examined potential differences in the regulation of myocardial extracellular matrix (ECM) constituents in mice with hypertrophy only (ABnonHF) and with HF (ABHF) as response to comparable pressure overload. The ascending aorta was banded, or left loose in sham-operated mice. Increased lung weight and left atrial diameter indicating pulmonary congestion were used to identify ABHF mice. Cardiac function and geometry were evaluated by echocardiography. Despite comparable pressure gradients and cardiac output, ABHF had reduced fractional shortening (23%), reduced systolic (28%) and diastolic (32%) tissue velocity and increased LV internal dimension in diastole (10%) and systole (17%) (LVIDd/s) compared to ABnonHF (p  0.05). Microarray analyses identified 120 differently regulated genes related to ECM in ABHF compared to ABnonHF (p  0.05). Interestingly, in ABHF, we found a 24% (p  0.05) reduction of the LV collagen VIII protein levels despite increased levels of LV total collagen by 23% (p  0.05). LV collagen VIII correlated negatively with LVIDd (R = 0.55, p = 0.03) and LVIDs (R = 0.72, p = 0.002). As this protein may function as a “sealant” binding collagen fibrils together, reduction of collagen VIII could potentially contribute to LV dilatation and development of HF.  相似文献   

11.
ARHGAP21 is highly expressed in the heart, which demonstrates activity over Cdc42 and interacts with proteins of the cytoskeleton and adherent junctions. The main cause of cardiac hypertrophy is mechanical stimulus; therefore we analyzed ARHGAP21 expression after acute mechanical stress in the myocardium and its association with FAK and PKCζ. We demonstrated that ARHGAP21 is relocated to Z-lines and costameres after pressure overload, and interacts with PKCζ and FAK in control rats (sham), rats submitted to aortic clamping and spontaneously hypertensive rats (SHR). Co-transfection using ARHGAP21 and PKCζ constructions demonstrated that ARHGAP21 associates with PKCζ-GST and endogenous FAK. Pulldown assay showed that ARHGAP21 binds to the C-terminal region of FAK. Moreover, ARHGAP21 binds to PKCζ phosphorylated on Thr410 in sham and SHR. However, ARHGAP21 only binds to FAK phosphorylated on Tyr925 of SHR. Additionally, PKCζ is phosphorylated by mechanical stimuli. These results suggest that ARHGAP21 may act as a signaling or scaffold protein of FAK and PKCζ signaling pathways, developing an important function during cardiac stress.  相似文献   

12.
Neuroblastoma is the third most frequent malignant tumor in childhood. One-third of the patients over one year of age at the time of diagnosis suffer from the disseminated form (stage IV). Despite highly aggressive chemotherapy survival rates are poor. One hundred and eighty-seven patients with neuroblastoma stage IV have been treated according to the German protocol NB 85. The probability of disease free survival is only 15% after 70 months. Treatment strategy in our protocol includes autologous and allogeneic bone marrow transplantation (BMT) for patients with stage IV (and greater than 1 year old). Twenty-two patients were grafted (7 allogeneic and 15 autologous). The conditioning regimen consisted mainly of high-dose melphalan (180 mg/m2) and total body irradiation (TBI) (3.4 Gy). Survival rates are discussed in the context of the chemotherapy protocol. Our own experience with autologous BMT is poor, despite of different purging methods. For this reason we decided to focus on allogeneic BMT. We have grafted five patients within the last 3 years. Three of them are alive and well, on died from veno-occlusive disease 70 days after BMT, and the remaining patient, grafted from a syngeneic donor, died from relapsing tumor. The main problem in neuroblastoma stage IV is resistance to chemotherapy. Intensification of the conditioning regimen or double autografting leads to a rate of toxic deaths close to 20% (Zucker, EBMT 1987) which is not tolerable. New improvements in the conditioning regimen have to be found to increase the effect of BMT.  相似文献   

13.
We recently developed a mouse model with a single functional allele of Serca2 (Serca2+/-) that shows impaired cardiac contractility and relaxation without overt heart disease. The goal of this study was to test the hypothesis that chronic reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2 levels in combination with an increased hemodynamic load will result in an accelerated pathway to heart failure. Age-matched wild-type and Serca2+/- mice were subjected to 10 wk of pressure overload via transverse aortic coarctation surgery. Cardiac hypertrophy and heart failure were assessed by echocardiography, gravimetry/histology, hemodynamics, and Western blotting analyses. Our results showed that approximately 64% of coarcted Serca2+/- mice were in heart failure compared with 0% of coarcted wild-type mice (P < 0.05). Overall, morbidity and mortality were greatly increased in Serca2+/- mice under pressure overload. Echocardiography assessment revealed a significant increase in left ventricular (LV) mass, and LV hypertrophy in coarcted Serca2+/- mice converted from a concentric to an eccentric pattern, similar to that seen in human heart failure. Coarcted Serca2+/- mice had decreased contractile/systolic and relaxation/diastolic performance and/or function compared with coarcted wild-type mice (P < 0.05), despite a similar duration and degree of pressure overload. SERCA2a protein levels were significantly reduced (>50%) in coarcted Serca2+/- mice compared with noncoarcted and coarcted wild-type mice. Our findings suggest that reduction in SERCA2 levels in combination with an increased hemodynamic load results in an accelerated pathway to heart failure.  相似文献   

14.
Limited dose-response curves for superoxide dismutase (SOD) were assessed in isolated and in vivo hearts. SOD at 2.3, 7, 20, or 50 mg/L suppressed CK release in Langendorff rat hearts by 61%, 63%, 72%, and 30%, respectively. SOD at 0.5, 1, 5, and 50 mg/L suppressed LDH release in Langendorff rabbit hearts by 32%, 48%, 54%, and −12%, respectively. In rabbit hearts subjected to coronary artery ligation and reperfusion in vivo, SOD at 2, 5,or 15 mg/kg reduced infarct size by 10%, 30% or 19%, respectively, while 50 mg/kg increased infarct size by 28%. In conclusion, while SOD was protective at low doses in all models, protection was lost at higher doses in the isolated rat and rabbit hearts, and exacerbation of damage was seen in the in vivo rabbit hearts.  相似文献   

15.
16.
Cardiac stress consistently activates c-Jun NH(2)-terminal kinase (JNK) pathways, however the role of different members of the JNK family is unclear. In this study, we applied pressure overload (TAC) in mice with selective deletion of the three JNK genes (Jnk1(-/-), Jnk2(-/-), and Jnk3(-/-)). Following TAC, all three JNK knockout mouse lines developed cardiac hypertrophy similar to wild-type mice (WT), but only JNK1(-/-) mice displayed a significant reduction in fractional shortening after 3 and 7 days of pressure overload, associated with a significant increase in terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining and marked inflammatory infiltrate. After the acute deterioration stage, JNK1(-/-) mice underwent a slow recovery followed by a steady progression of cardiac dysfunction, becoming indistinguishable from WT after 12 weeks of TAC. These data suggest that JNK1 plays a protective role in response to pressure overload, preventing the early deterioration in cardiac function following an acute increase in afterload.  相似文献   

17.
18.
19.
Sarcomere shortening during contraction was measured by using laser diffraction, in thin, rabbit right ventricular (RV) trabeculae from normal hearts (N) (n = 5) and from hearts subjected to RV pressure overload by pulmonary banding (H) (n = 5). Banding resulted in substantial RV hypertrophy after 2 wk. Hypertrophied preparations had the same resting muscle length (H = 3.15 +/- 0.29 mm) and resting sarcomere lengths (H = 2.16 +/- 0.005 micron) as the normal preparations (3.10 +/- 0.37 mm, 2.16 +/- 0.008 micron, respectively). Total tension at the peak of isometric twitches was the same as normal in the hypertrophied muscles (N = 8.06 +/- 1.20, H = 8.51 +/- 1.95 g/mm2). However, the amount of auxotonic sarcomere shortening was much less than normal in the hypertrophied preparations (N = 0.39 +/- 0.028, H = 0.19 +/- 0.034 micron; P less than 0.001). In isotonic contractions in which the ratio of muscle shortening to resting muscle length was the same in both the normal and hypertrophied muscles (ratio of 0.05 in both groups), the extent of sarcomere shortening relative to resting sarcomere length was less in the hypertrophied muscles than in the normal preparations (N = 0.14 +/- 0.01), H = 0.07 +/- 0.01; P less than 0.01). Series elasticity was the same as normal in the hypertrophied muscle P less than 0.05). Less auxotonic sarcomere shortening for a given level of isometric tension development and less isotonic sarcomere shortening per unit muscle shortening indicate that there is less than normal work per sarcomere during contraction in hypertrophied myocardium. These findings may have important implications for intracellular compensatory adaptation in pressure overload cardiac hypertrophy.  相似文献   

20.
Bone marrow hypoplasia was characterized in a group of female ferrets during prolonged estrus. All ferrets exhibited hematological changes characteristic of various degrees of bone marrow hypoplasia. Hematological findings included initial thrombocytosis and leukocytosis followed by thrombocytopenia, leukopenia and anemia. Platelet counts below 50,000/microliters were observed in 55% of the ferrets. Hemorrhagic anemia due to thrombocytopenia was the most common cause of death and the mortality rate was 40%. Histopathological findings included bone marrow hypoplasia affecting all cell lines and decreased splenic extramedullary hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号