首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Balanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrate that the presence of CB1 receptors in glutamatergic hippocampal neurons is both necessary and sufficient to provide substantial endogenous protection against kainic acid (KA)-induced seizures. The direct endocannabinoid-mediated control of hippocampal glutamatergic neurotransmission may constitute a promising therapeutic target for the treatment of disorders associated with excessive excitatory neuronal activity.  相似文献   

2.
Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron‐type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA‐CB1‐KO mice) or cortical glutamatergic neurons (Glu‐CB1‐KO mice). Compared to their wild‐type littermates, Glu‐CB1‐KO displayed a small decrease of CB1 mRNA amount, immunoreactivity and [³H]CP55,940 binding. Conversely, GABA‐CB1‐KO mice showed a drastic reduction of these parameters, confirming that CB1 is present at much higher density on hippocampal GABAergic interneurons than glutamatergic neurons. Surprisingly, however, saturation analysis of HU210‐stimulated [35S]GTPγS binding demonstrated that ‘glutamatergic’ CB1 is more efficiently coupled to G protein signalling than ‘GABAergic’ CB1. Thus, the minority of CB1 on glutamatergic neurons is paradoxically several fold more strongly coupled to G protein signalling than ‘GABAergic’ CB1. This selective signalling mechanism raises the possibility of designing novel cannabinoid ligands that differentially activate only a subset of physiological effects of CB1 stimulation, thereby optimizing therapeutic action.  相似文献   

3.
4.
Effects of MK-801 (a NMDA receptor blocker) and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione; a non-NMDA receptor blocker) on several neurotoxic responses induced by kainic acid (KA) were examined in ICR mice. In a lethality test, intracerebroventricular (i.c.v.) pretreatment of MK-801 (1 microg), but not CNQX (0.5 microg), attenuated the time to lethality induced by KA (0.5 microg) administered i.c.v. In the memory test (a passive avoidance test), MK-801, but not CNQX, prevented the memory loss induced by KA (0.1 microg). The damage induced by KA (0.1 microg) administered i.c.v. in the hippocampus was markedly concentrated in the CA3 pyramidal neurons. Both MK-801 and CNQX blocked the pyramidal cell death in CA3 hippocampal region induced by KA. In the immunocytochemical study, KA dramatically increased the phosphorylated ERK (p-ERK) and decreased the phosphorylated CREB (p-CREB) in the hippocmapus. Both MK-801 and CNQX attenuated, in part, the increased p-ERK and the decreased p-CREB induced by KA. In addition, both MK-801 and CNQX partially reduced the increased c-Fos and c-Jun protein expression in hippocampus induced by KA. Our results suggest that both NMDA and non-NMDA receptors are involved in supraspinally administered KA-induced pyramidal cell death in CA3 region of hippocampus in the mouse and the p-ERK and the dephosphorylation of CREB protein may play an important role in CA3 region cell death of the hippocampus induced by KA administered supraspinally. Furthermore, c-Fos and c-Jun proteins may serve as third messengers responsible for CA3 pyramidal cell death induced by supraspinally administered KA.  相似文献   

5.
目的探讨组蛋白去乙酰化酶2(HDAC2)在成年C57BL/6小鼠海马内的分布及其与突触后致密区(PSD)蛋白成员的共定位,为揭示HDAC2与PSD蛋白复合物之间的内在联系及在海马相关的学习记忆过程中可能起到的调控作用提供形态学依据。方法应用免疫组化方法观察HDAC2在C57BL/6小鼠海马各区的表达分布。应用免疫荧光双标技术研究HDAC2与PSD蛋白成员N-甲基-D-天冬氨酸(NMDA)受体亚单位1(NR1)、PSD-95之间是否存在共定位。结果 HDAC2在小鼠海马CA1~CA3区锥体细胞和齿状回颗粒细胞均具有明显表达,而在各区的始层、辐射层、腔隙-分子层以及齿状回多形细胞层表达均较少。免疫荧光双标染色图片的重叠表明,HDAC2与NR1、PSD-95在小鼠海马CA1~CA3区锥体细胞层和齿状回颗粒细胞层内均可见显著共表达现象,其他区域偶见散在分布的双染神经元。结论 HDAC2在小鼠海马锥体细胞层和颗粒细胞层表达丰富,并与PSD蛋白成员间存在共定位现象。本实验结果为探讨HDAC2对谷氨酸能突触后神经元依赖的突触可塑性的调节机制提供了形态学依据。  相似文献   

6.
One of the well-known effects of cannabinoids is the impairment of cognitive processes, including short-term memory formation, by altering hippocampal and neocortical functions reflected in network activity. Acting on presynaptically located G protein-coupled receptors in the hippocampus, cannabinoids modulate the release of neurotransmitter molecules. CB1 cannabinoid receptors, so far the only cloned cannabinoid receptor type in the CNS, are selectively expressed on the axon terminals of a subset of GABAergic inhibitory interneurons containing the neuropeptide cholecystokinin. Activation of CB1 receptors reduces GABA release from presynaptic terminals, thereby increasing the excitability of principal cells. Novel, non-CB1 cannabinoid sensitive receptors are present on the hippocampal excitatory axon terminals, which suppress glutamate release. These cannabinoid receptors have distinct pharmacological features compared to CB1, i.e. WIN 55212-2 is an order of magnitude less potent in reducing glutamatergic transmission than in inhibiting GABAergic postsynaptic currents, and the novel receptor binds vanilloid receptor ligands. Thus, at least two different cannabinoid sensitive presynaptic receptors regulate network activity in the hippocampus, CB1 via the GABAergic interneurons, and a new receptor via a direct action on pyramidal cell axon terminals.  相似文献   

7.
The iron siderophore binding protein lipocalin 2 (LCN2, also known as 24p3, NGAL and siderocalin) may be involved in iron homeostasis, but to date, little is known about expression of its putative receptor, brain-type organic cation transporter (BOCT, also known as BOCT1, 24p3R, NGALR and LCN2R), in the brain during neurodegeneration. The present study was carried out to elucidate the expression of LCN2 and BOCT in hippocampus after excitotoxicity induced by the glutamate analog, kainate (KA) and a possible role of LCN2 in neuronal injury. As reported previously, a rapid and sustained induction in expression of LCN2 was found in the hippocampus after intracerebroventicular injection of KA. BOCT was expressed in neurons of the saline-injected control hippocampus, and immunolabel for BOCT protein was preserved in pyramidal neurons of CA1 at 1 day post-KA injection, likely due to the delayed onset of neurodegeneration after KA injection. At 3 days and 2 weeks after KA injections, loss of immunolabel was observed due to degenerated neurons, although remaining neurons continued to express BOCT, and induction of BOCT was found in OX-42 positive microglia. This resulted in an overall decrease in BOCT mRNA and protein expression after KA treatment. Increased expression of the pro-apoptotic marker, Bim, was found in both neurons and microglia after KA injection, but TUNEL staining indicating apoptosis was found primarily in Bim-expressing neurons, but not microglia. Interaction between LCN2 and BOCT was found by DuoLink assay in cultured hippocampal neurons. Apo-LCN2 without iron caused no significant differences in neuronal Bim expression or cell survival, whereas holo-LCN2 consisting of LCN2:iron:enterochelin complex increased Bim mRNA expression and decreased neuronal survival. Together, results suggest that LCN2 and BOCT may have a role in neuronal injury.  相似文献   

8.
Previous studies have reported that calbindin D-28k (CB), a calcium-binding protein, containing neurons in the hippocampus play an important role in hippocampal excitability in epilepsy, because CB modulates the free calcium ion during seizure. Hence, in the present study, we investigated changes of CB expression in the hippocampus and its association in the Mongolian gerbil to identify roles of CB in epileptogenesis. CB immunoreactivity in the hippocampus was significantly lower in the pre-seizure group of seizure sensitive (SS) gerbils as compared with those seen in the seizure resistant (SR) gerbils. The distribution of CB immunoreactivity in the hippocampus showed significant difference after seizure on-set in SS gerbils. CB immunoreactivity in the hippocampal CA1, CA2 areas, and subiculum was lowest at 3h after seizure on-set; thereafter, the immunoreactivity became to increase to 12h after seizure on-set. Mossy fibers, Schaffer collaterals and dentate granule cells showed the highest CB immunoreactivity at 3h after seizure on-set; thereafter, the immunoreactivity became to decrease. In the case of the intrinsic and output connections of the hippocampus, a rapid decrease of CB serves an inhibitory function, which regulates the seizure activity and output signals from the hippocampus.  相似文献   

9.
In the present study, we focused upon expression and changes of endogenous insulin-like growth factor-1 (IGF-1) in the hippocampus of the Mongolian gerbil after ischemic insult. In sham-operated animals, IGF-1 immunoreactivity was absent from the hippocampus. IGF-1-immunoreactive (IR) neurons were detected at 12 h and 1 day after ischemic insult. In the hippocampal CA1 area, the IGF-IR neurons were non-pyramidal cells (GABAergic neurons). In the hippocampal CA2/3 areas, the IGF-1-IR neurons were pyramidal and non-pyramidal cells, and in the dentate gyrus the IGF-1-IR neurons were hilar neurons. Four days after ischemia-reperfusion, IGF-1 immunoreactivity disappeared from neurons, and significantly increased in astrocytes and microglia. These results suggest that the induction of IGF-1 in the CA1 area during the early stage (12-24 h after ischemic insult) is associated with the relative vulnerabilities of pyramidal glutamatergic neurons and non-pyramidal GABAergic neurons. The later increase (4 days after ischemic insult) of IGF-1 expression and protein content was found to promote the activities of astrocytes and microglia. These increases of IGF-1 in astrocytes and in microglia are associated with mechanisms that compensate for the effects of delayed neuronal death.  相似文献   

10.
Because excessive glutamate release is believed to play a pivotal role in numerous neuropathological disorders, such as ischemia or seizure, we aimed to investigate whether intrinsic prosaposin (PS), a neuroprotective factor when supplied exogenously in vivo or in vitro, is up-regulated after the excitotoxicity induced by kainic acid (KA), a glutamate analog. In the present study, PS immunoreactivity and its mRNA expression in the hippocampal and cortical neurons showed significant increases on day 3 after KA injection, and high PS levels were maintained even after 3 weeks. The increase in PS, but not saposins, detected by immunoblot analysis suggests that the increase in PS-like immunoreactivity after KA injection was not due to an increase in saposins as lysosomal enzymes after neuronal damage, but rather to an increase in PS as a neurotrophic factor to improve neuronal survival. Furthermore, several neurons with slender nuclei inside/outside of the pyramidal layer showed more intense PS mRNA expression than other pyramidal neurons. Based on the results from double immunostaining using anti-PS and anti-GABA antibodies, these neurons were shown to be GABAergic interneurons in the extra- and intra-pyramidal layers. In the cerebral cortex, several large neurons in the V layer showed very intense PS mRNA expression 3 days after KA injection. The choroid plexus showed intense PS mRNA expression even in the normal rat, and the intensity increased significantly after KA injection. The present study indicates that inhibitory interneurons as well as stimulated hippocampal pyramidal and cortical neurons synthesize PS for neuronal survival, and the choroid plexus is highly activated to synthesize PS, which may prevent neurons from excitotoxic neuronal damage. To the best of our knowledge, this is the first study that demonstrates axonal transport and increased production of neurotrophic factor PS after KA injection.  相似文献   

11.
We have demonstrated that kainate (KA) induces a reduction in mitochondrial Mn-superoxide dismutase (Mn-SOD) expression in the rat hippocampus and that KA-induced oxidative damage is more prominent in senile-prone (SAM-P8) than senile-resistant (SAM-R1) mice. To extend this, we examined whether KA seizure sensitivity contributed to mitochondrial degeneration in these mouse strains. KA-induced seizure susceptibility in SAM-P8 mice paralleled prominent increases in lipid peroxidation and protein oxidation and was accompanied by significant impairment in glutathione homeostasis in the hippocampus. These findings were more pronounced in the mitochondrial fraction than in the hippocampal homogenate. Consistently, KA-induced decreases in Mn-SOD protein expression, mitochondrial transmembrane potential, and uncoupling protein (UCP)-2 expression were more prominent in SAM-P8 than SAM-R1 mice. Marked release of cytochrome c from mitochondria into the cytosol and a higher level of caspase-3 cleavage were observed in KA-treated SAM-P8 mice. Additionally, electron microscopic evaluation indicated that KA-induced increases in mitochondrial damage and lipofuscin-like substances were more pronounced in SAM-P8 than SAM-R1 animals. These results suggest that KA-mediated mitochondrial oxidative stress contributed to hippocampal degeneration in the senile-prone mouse.  相似文献   

12.
Activity-dependent synaptic plasticity has been thought to be a cellular basis of memory and learning. The late phase of long-term potentiation (L-LTP), distinct from the early phase, lasts for up to 6 h and requires de novo synthesis of mRNA and protein. Many LTP-related genes are enhanced in the hippocampus during pentyrenetetrazol (PTZ)- and kainate (KA)-mediated neural activation. In this study, mice were administered intraperitoneal injections of PTZ 10 times, once every 48 h, and showed an increase in seizure indexes. Genes related to plasticity were efficiently induced in the mouse hippocampus. We used a PCR-based cDNA subtraction method to isolate genes that are expressed in the hippocampus of repeatedly PTZ-treated mice. One of these genes, neural activity-related RING finger protein (NARF), encodes a new protein containing a RING finger, B-box zinc finger, coiled-coil (RBCC domain) and beta-propeller (NHL) domain, and is predominantly expressed in the brain, especially in the hippocampus. In addition, KA up-regulated the expression of NARF mRNA in the hippocampus. This increase correlated with the activity of the NMDA receptor. By analysis using GFP-fused NARF, the protein was found to localize in the cytoplasm. Enhanced green fluorescent protein-fused NARF was also localized in the neurites and growth cones in neuronal differentiated P19 cells. The C-terminal beta-propeller domain of NARF interacts with myosin V, which is one of the most abundant myosin isoforms in neurons. The NARF protein increases in hippocampal and cerebellar neurons after PTZ-induced seizure. These observations indicated that NARF expression is enhanced by seizure-related neural activities, and NARF may contribute to the alteration of neural cellular mechanisms along with myosin V.  相似文献   

13.
Marijuana and its main psychotropic ingredient Δ9-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release γ aminobutyric acid), cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions.  相似文献   

14.
Marijuana and its main psychotropic ingredient Δ9-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release γ aminobutyric acid), cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions.  相似文献   

15.
Marijuana and its main psychotropic ingredient Delta(9)-tetrahydrocannabinol (THC) exert a plethora of psychoactive effects through the activation of the neuronal cannabinoid receptor type 1 (CB1), which is expressed by different neuronal subpopulations in the central nervous system. The exact neuroanatomical substrates underlying each effect of THC are, however, not known. We tested locomotor, hypothermic, analgesic, and cataleptic effects of THC in conditional knockout mouse lines, which lack the expression of CB1 in different neuronal subpopulations, including principal brain neurons, GABAergic neurons (those that release gamma aminobutyric acid), cortical glutamatergic neurons, and neurons expressing the dopamine receptor D1, respectively. Surprisingly, mice lacking CB1 in GABAergic neurons responded to THC similarly as wild-type littermates did, whereas deletion of the receptor in all principal neurons abolished or strongly reduced the behavioural and autonomic responses to the drug. Moreover, locomotor and hypothermic effects of THC depend on cortical glutamatergic neurons, whereas the deletion of CB1 from the majority of striatal neurons and a subpopulation of cortical glutamatergic neurons blocked the cataleptic effect of the drug. These data show that several important pharmacological actions of THC do not depend on functional expression of CB1 on GABAergic interneurons, but on other neuronal populations, and pave the way to a refined interpretation of the pharmacological effects of cannabinoids on neuronal functions.  相似文献   

16.
Heme oxygenase-1 (HO-1) is induced under various stresses. Here we report the induction and localization of HO-1 in the rat brain by intraperitoneal administration of kainic acid (KA). Both mRNA and protein of HO-1 were markedly induced by KA treatment, and each maximal induction was observed 24 h after KA administration. In situ hybridization analysis showed that HO-1 mRNA appeared predominantly in glial cells, and confined neurons were positive in the cerebral cortex, basal ganglia, and hippocampal pyramidal cell layer. Immunohistochemical analysis showed that the positive cells in the cerebral cortex and hippocampus were mainly astrocytes and microglia, whereas neurons in the basal ganglia showed intense immunoreactivity. We also demonstrate the dissociation between HO-1 mRNA and protein level in the hippocampal pyramidal neurons, which is known to be vulnerable against excitotoxicity, and discuss the correlation between this dissociation and the vulnerability of hippocampal pyramidal neurons.  相似文献   

17.
We analyzed the changes in expression of ciliary neurotrophic factor (CNTF) and its receptor, ligand-binding subunit a (CNTFRa), in the hippocampus following intraperitoneal administration of a convulsant dose of kainic acid (KA). Immunohistochemistry and immunoblotting showed that CNTF levels rose dramatically between day 1 and day 10, and that the CNTF was located in reactive astrocytes. In contrast, upregulation of CNTFRalpha mRNA, occurred in neurons as well as astrocytes. A rapid, and short-lived (3 h-2 d) increase in CNTFRalpha was also observed in the more resistant granule cells and CA2 pyramidal neurons. The increase in astrocytes was detected by day 1 and was sustained for more than 5 d. These results show that CNTF and CNTFRalpha are differentially regulated in hippocampal neurons and reactive astrocytes following KA injection, indicating that these proteins may be involved in the regulation of astrocyte and neuronal degenerative responses.  相似文献   

18.
Excitotoxicity due to the excessive activation of glutamatergic receptors leads to neuronal dysfunction and death. Excitotoxicity has been implicated in the pathogenesis of a myriad of neurodegenerative diseases with distinct etiologies such as Alzheimer’s and Parkinson’s. Numerous studies link apolipoprotein D (apoD), a secreted glycoprotein highly expressed in the central nervous system (CNS), to maintain and protect neurons in various mouse models of acute stress and neurodegeneration. Here, we used a mouse model overexpressing human apoD in neurons (H-apoD Tg) to test the neuroprotective effects of apoD in the kainic acid (KA)-lesioned hippocampus. Our results show that apoD overexpression in H-apoD Tg mice induces an increased resistance to KA-induced seizures, significantly attenuates inflammatory responses and confers protection against KA-induced cell apoptosis in the hippocampus. The apoD-mediated protection against KA-induced toxicity is imputable in part to increased plasma membrane Ca2+ ATPase type 2 expression (1.7-fold), decreased N-methyl-d-aspartate receptor (NMDAR) subunit NR2B levels (30 %) and lipid metabolism alterations. Indeed, we demonstrate that apoD can attenuate intracellular cholesterol content in primary hippocampal neurons and in brain of H-apoD Tg mice. In addition, apoD can be internalised by neurons and this internalisation is accentuated in ageing and injury conditions. Our results provide additional mechanistic information on the apoD-mediated neuroprotection in neurodegenerative conditions.  相似文献   

19.
Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection.  相似文献   

20.
目的探讨褪黑素(me1atonin,MT)对海人酸(kainic acid,KA)致痫大鼠海马内TGF-β3的影响,进一步明确其在中枢内的作用。方法将实验大鼠随机分为3组:生理盐水对照组(NS组)、海人酸组(KA组)、褪黑素+海人酸组(MT+KA组)。各组大鼠给予相应试剂处理后观察并记录大鼠行为学改变,用免疫组织化学方法、RT-PCR检测大鼠海马内TGF-β3(transforming growth factor-β3)的表达情况及其mRNA变化。结果动物行为学观察显示,NS组无癫痫发作,KA组发作程度为Ⅲ-V级,MT+KA组为0-Ⅲ级;免疫组织化学结果显示,TGF-β3在3组大鼠海马内均有表达,其中KA组、MT+KA组较NS组表达增强,MT+KA组较KA组增强,差异具有显著性意义(P0.05);RT-PCR结果显示,与NS组相比较,KA组、MT+KA组大鼠海马内TGF-β3 mRNA含量均升高;但MT+KA组升高较KA组多,差异具有显著性意义(P0.05)。结论褪黑素能明显改善海人酸诱发的大鼠癫痫,增强海马内TGF-β3的表达,减轻海马神经元损伤,发挥中枢保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号