首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work concerns the synthesis, the supramolecular assembly and the evaluation of some biological properties, such as DNA and RNA-binding ability and human serum stability, of novel nucleopeptides. These compounds are of potential interest for the well-known properties that similar compounds, such as natural peptidyl nucleosides, possess in biology and medicine and also for the possibility to realize nucleopeptide-based supramolecular systems useful for drug and gene delivery applications. More particularly, all four nucleobase-containing peptides were synthesized by solid phase synthesis, purified by HPLC and characterized by NMR and ESI-MS. Subsequently, nucleopeptide self-assembly as well as DNA and RNA-binding ability were investigated by CD spectroscopy and further information on the formation of molecular networks, based on the peptidyl nucleoside analogues and nucleic acids, was obtained by Laser Light Scattering. Finally, nucleopeptide enzymatic stability was studied and a half life of about 2 hours was found in the presence of 50% fresh human serum.  相似文献   

2.
In this work, we report the synthesis of a thymine-functionalized nucleoamino acid suitable for the solid phase synthesis of nucleopeptides. The monomer was obtained in solution starting from commercial compounds and after NMR (1H and 13C) and ESIMS (positive ions) characterization it was used for the assembly of a cationic nucleopeptide obtained by sequentially introducing underivatized l-lysine units and nucleoamino acid monomers. After detachment from the resin, performed in acidic conditions, the oligomer was purified by HPLC and characterized by LC-ESIMS (positive ions) which confirmed the identity of the thymine-based nucleopeptide. The cationic nucleobase-containing peptide, well soluble in water, was studied by CD spectroscopy which allowed us to exclude any helical pre-organization of the nucleopeptide in the experimental conditions used. Furthermore, CD behavior of the oligomer at different temperatures was also studied as described in this work.  相似文献   

3.
J Robles  E Pedroso    A Grandas 《Nucleic acids research》1995,23(20):4151-4161
The synthesis of a nucleopeptide with the sequence -Ser(p5'CATCAT)-Gly-Asp- has been undertaken by either convergent or stepwise solid-phase strategies, both of which use base-labile permanent protecting groups. The coupling of phosphitylated protected peptides onto oligonucleotide-resins did not afford the desired nucleopeptide, which was nevertheless obtained after oligonucleotide elongation at the hydroxyl group of the resin-bound peptide and deprotection under mild basic conditions. A preliminary study on the stability of different nucleopeptides to bases is also reported.  相似文献   

4.
5.
Cationic nucleopeptides belong to a family of synthetic oligomers composed by amino acids and nucleobases. Their capability to recognize nucleic acid targets and to cross cellular membranes provided the basis for considering them as novel non-covalent delivery agents for nucleic acid pharmaceuticals. Herein, starting from a 12-mer nucleopeptide model, the number of cationic residues was modulated in order to obtain new nucleopeptides endowed with high solubility in acqueous medium, acceptable bio-stability, low cytotoxicity and good capability to bind nucleic acid. Two candidates were selected to further investigate their potential as nucleic acid carriers, showing higher efficiency to deliver PNA in comparison with RNA. Noteworthy, this study encourages the development of nucleopeptides as new carriers to extend the known strategies for those nucleic acid analogues, especially PNA, that still remain difficult to drive into the cells.  相似文献   

6.
Abstract

Hydroxylated amino acids can be introduced in nucleopeptides using the acetyl group for their side chain protection. Base-stable nucleopeptide analogues are obtained if homoserine is used as the linking residue.  相似文献   

7.
This work deals with the Dakin-West synthesis, starting from the nucleoamino acid 1-thyminyl acetic acid, as well the NMR, ESI MS, and X-ray characterization of a heteroaromatic compound denominated by us T(2)CO, comprising two thymine moieties anchored to a 2-propanonic unit, the spectroscopic properties of which were studied by UV as a function of temperature and ionic strength. Preliminary binding-studies with molecules of biomedical interest such as nucleic acids and proteins, performed on samples containing T(2)CO, suggested that this molecule is able to interact very weakly with double-stranded RNA, whereas it does not seem to bind other nucleic acids or proteins. Moreover, by studies with fresh human serum we found that T(2)CO is resistant to enzymatic degradation till 24?h, whereas UV metal binding-studies, performed using solutions of copper (II) chloride dihydrate and nickel (II) chloride hexahydrate, revealed a certain ability of T(2)CO to bind copper (II) cation. Finally, by CD spectroscopy we investigated the influence of T(2)CO on the already described supramolecular networks based on L-serine-containing nucleopeptides. More particularly, we found that T(2)CO is able to increase the level of structuration of the non-covalent supramolecular assembly of the chiral nucleopeptides, which is a feature of remarkable interest for the development of innovative drug delivery tools.  相似文献   

8.
In order to develop new oligodeoxyribonucleotide (ODN) analogs to be used in biotechnological applications, we report here the synthesis, characterization and nucleic acid binding studies of novel nucleopeptides, that we called ε-lys/γ-dabPNAs, containing a backbone of alternated l-diaminobutyric acid and l-lysine moieties. Exploring the hybridization properties of the new ODN analog, we found, by circular dichroism and UV spectroscopies, that a homothymine ε-lys/γ-dabPNA hexamer binds both DNA and RNA of complementary sequence. Furthermore, human serum stability assays on the alternate nucleopeptide evidenced a noteworthy degradation resistance. These results encourage us to deepen the knowledge of this analog, in order to evaluate its possible use in antigene/antisense or diagnostic applications.  相似文献   

9.
A nucleopeptide was prepared in a convergent manner via segmental coupling of the protected biopolymers in solution. The resulting nucleopeptide (4b, 72%) containing the binding site of lambda repressor and a peptide containing the consensus sequence of the DNA binding helix of the helix turn-helix-proteins was obtained using only five equivalents of the peptide relative to the oligonucleotide. This demonstrates that the recently developed method for the solution phase coupling of protected oligonucleotides is amenable to the convergent synthesis of larger nucleopeptides that are potentially capable of adopting secondary structure.  相似文献   

10.
In this Letter, we investigated the binding properties towards nucleic acids of a thymine-functionalized oligolysine, composed of nucleobase-bearing amino acid moieties and underivatized l-lysine residues alternate in the backbone. The basic nucleopeptide proved to be well soluble in water and able to interact with both DNA and RNA, as suggested by circular dichroism, UV and surface plasmon resonance studies performed on the thymine-containing oligomer with both adenine-containing DNA (dA12) and RNA (rA12 and poly rA) molecules. In both cases the thymine-functionalized oligolysine was proven to form complexes characterized by a 1:1 T/A stoichiometric ratio, as evidenced by CD titration. UV melting experiments revealed that the complex formed between the homothymine oligolysine and rA12 RNA was more stable than the complex with dA12 DNA probably due to the additional H-bonding of the 2′-OH groups in RNA, that reinforces the overall interaction with the nucleopeptide. Finally, human serum stability assays were conducted on the thymine-bearing nucleopeptide which showed a half-life of 45 min.  相似文献   

11.
In the present work, we report the synthesis and the characterization of a new chiral nucleoaminoacid, in which a diaminobutyric moiety is connected to the DNA nucleobase by an amidic bond, and its oligomerization to give the corresponding nucleo-gamma-peptide. The ability of this synthetic polymer to bind complementary DNA was studied in order to explore its possible use in antigene/antisense or diagnostic applications. Our interest in the presented DNA analogue was also supported by the importance of gamma-aminoacid-containing compounds in natural products of biological activity and by the known stability of gamma-peptides to enzymatic degradation. Furthermore, our work could contribute to the study of the role of nucleopeptides as prebiotic material in a PNA world that could successively lead to the actual DNA/RNA/protein world, as recently assumed.  相似文献   

12.
The effect of changing 1st and 4th amino acid residues on beta-turn preference of tetrapeptide sequences was studied by use of CD spectra of th chromophoric derivatives, which have Dnp- and pNA-groups as the amino and carboxyl substituents, respectively. The effect was examined with the tetrapeptides having such sequences at the 2nd and 3rd positions as -L-Pro-L-Asn-, -L-Pro-Gly-, -L-Pro-D-Ala-, -L-Ala-D-Leu-, -L-Ala-L-Pro-, and -D-Ala-L-Pro-. The beta-turn preferences estimated from the CD intensities of the bands due to exciton interaction were found to depend largely on the configurations of the 1st and 4th amino acid residues. When 1st and 2nd (or 3rd and 4th) residues had the same configuration, decreased intensity of the CD band was observed even if the internal sequence had high beta-turn preference. Terminal Gly residues were favorable for the beta-turn conformation in many of the tetrapeptide sequences examined.  相似文献   

13.
Tyrosyl-DNA phosphodiesterase-1 (Tdp1) is the only known enzyme to remove tyrosine from complexes in which the amino acid is linked to the 3′-end of DNA fragments. Such complexes can be produced following DNA processing by topoisomerase I, and recent studies in yeast have demonstrated the importance of TDP1 for cell survival following topoisomerase I-mediated DNA damage. In the present study, we used synthetic oligodeoxynucleotide–peptide conjugates (nucleopeptides) and recombinant yeast Tdp1 to investigate the molecular determinants for Tdp1 activity. We find that Tdp1 can process nucleopeptides with up to 13 amino acid residues but is poorly active with a 70 kDa fragment of topoisomerase I covalently linked to a suicide DNA substrate. Furthermore, Tdp1 was more effective with nucleopeptides with one to four amino acids than 15 amino acids. Tdp1 was also more effective with nucleopeptides containing 15 nt than with homolog nucleopeptides containing 4 nt. These results suggest that DNA binding contributes to the activity of Tdp1 and that Tdp1 would be most effective after topoisomerase I has been proteolyzed in vivo.  相似文献   

14.
Conformational analysis, based on ECEPP (Empirical Conformational Energy Program for Peptides) using the chain build-up procedure, was applied to determine the low-energy conformations for a series of tetrapeptides. The tetrapeptides are components of larger peptides which have been found to bind to the CD4 receptor of monocytes. Several previous studies have implicated the tetrapeptide units investigated here as being critical to the biological activities of the full peptides. Five such tetrapeptides were studied: Ser-Ser-Asn-Tyr (from ribonuclease A), Thr-Thr-Asn-Tyr (from peptide T, known to block human immunodeficiency virus from attaching to CD4+ T cells), Thr-Ile-Asn-Tyr (from polio virus coat protein, which is less active than the other peptides in binding to CD4 receptors), Ser-Ser-Ala-Tyr (from the gp 120 coat protein of human immunodeficiency virus, a variant of the peptide T sequence, active in blocking viral attachment to CD4+ cells), and the tetrapeptide from an active synthetic pentapeptide, Asn-Thr-Lys-Tyr (from Asn-Thr-Lys-Tyr-Thr). Using a 7 kcal/mol cutoff, the low-energy conformations for each peptide were computed. Approximately 20,000 conformations were computed for each tetrapeptide. Residue probability profiles were determined for each tetrapeptide. All tetrapeptides except for the polio sequence showed flexibility in the sense that many low-energy conformations were possible. In previous studies, it was postulated that the critical tetrapeptide units would adopt conformations similar to the one observed in a segment of ribonuclease A, residues 22-25, a beta-bend, which is part of an octapeptide segment (residues 19-26) that is homologous to the sequence of peptide T.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The tetrapeptide derivative Tyr-Gly-Phe-Ala-OBz (1) forms monolayers as confirmed by compressibility studies carried out at various temperatures. Peptide 1 monolayer exhibits an anomalous structural transition at 40 degrees C as evidenced by pi-A isotherms recorded at different temperatures. The structural transition is also observed in aqueous solution of trifluoroacetate of peptide 1 as evidenced by fluorescence and Raman scattering intensity measurements.  相似文献   

16.
The effects of N- and C-terminal oligoalanine insertions into des-Met5-[D-Ala2]enkephalin amide (I) on the biological activity and spatial structure were examined. The corresponding analogues were obtained by solid-phase synthesis using Sephadex LH-20 ac a polymeric support. Biological activity was assayed via changes in the pain threshold in the rat, body temperature, and also as affinity for opiate receptors. Active analogues were obtained upon modifying the carboxylic group in the tetrapeptide I with di- and tri-D-alanyls. The CD spectra of the C-derivatized analogyes were similar to those of the starting tetrapeptide I and [Met5]enkephalin, whereas the N-derivatized analogues showed essentially different CD spectra.  相似文献   

17.
18.
Using detailed functional studies on 24 human transferrin receptor mutants, we identified YXRF as the internalization sequence. Provided that at least 7 residues separate this tetrapeptide from the transmembrane region, changing the tetrapeptide position within the TR cytoplasmic domain does not reduce internalization activity. Thus, any conformational determinant for internalization must be localized to the YXRF sequence. Twenty-eight tetrapeptide analogs of YXRF, found by an unbiased search of all known three-dimensional protein structures, significantly favored tight turns similar to a type I turn. Of the ten tetrapeptides most closely related to YXRF, eight were surface exposed and had tight-turn conformations, as were four of five tetrapeptides with sequences related to the low density lipoprotein receptor internalization motif, NPXY. The internalization sequences of both receptors contain aromatic residues with intervening hydrogen-bonding residues. Thus, two distinct internalization sequences favor a common structural chemistry and implicate an exposed tight turn as the recognition motif for high efficiency endocytosis.  相似文献   

19.
alpha,beta-Poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA), a synthetic water-soluble biocompatible polymer, was derivatized with glycidyl methacrylate (GMA), in order to introduce in its structure chemical residues having double bonds and ester groups. The obtained copolymer (PHG) contained 29 mol% of GMA residues. PHG aqueous solutions at various concentrations ranging from 30 to 70 mg/ml were exposed to a source of UV rays at lambda 254 nm in the presence or in the absence of N,N'-methylenebisacrylamide (BIS); the formation of compact gel phases was observed beginning from 50 mg/ml. The obtained networks were characterized by FT-IR spectrophotometry and swelling measurements which evidenced the high affinity of PHG hydrogels towards aqueous media at different pH values. In vitro chemical or enzymatic hydrolysis studies suggested that the prepared samples undergo a partial degradation both at pH 1 and pH 10 and after incubation with enzymes such as esterase, pepsin and alpha-chymotrypsin. Finally, the effect of irradiation time on the yield and the properties of these hydrogels was investigated and the sol fractions coming from irradiated samples, properly purified, were characterized by FT-IR and 1H-NMR analyses.  相似文献   

20.
Purines and pyrimidines play a key role in nucleic acid and nucleotide metabolism of all cells. In addition, they can be used as nitrogen sources in plants and many microorganisms. Transport of nucleobases across biological membranes is mediated by specific transmembrane transport proteins. Nucleobase transporters have been identified genetically and/or physiologically in bacteria, fungi, protozoa, algae, plants and mammals. A limited number of bacterial and fungal transporter genes have been cloned and analysed in great detail at the molecular level. Very recently, nucleobase transporters have been identified in plants. In other systems, with less accessible genetics, such as vertebrates and protozoa, no nucleobase transporter genes have been identified, and the transporters have been characterized and classified by physiological and biochemical approaches instead. In this review, it is shown that nucleobase transporters and similar sequences of unknown function present in databases constitute three basic families, which will be designated NAT, PRT and PUP. The first includes members fromarchea, eubacteria, fungi, plants and metazoa, the second is restricted to prokaryotes and fungi, and the last one is only found in plants. Interestingly, mammalian ascorbate transporters are homologous to NAT sequences. The function of different nucleobase transporters is also described, as is how their expression is regulated and what is currently known about their structure-function relationships. Common features emerging from these studies are expected to prove critical in understanding what governs nucleobase transporter specificity and in selecting proper model microbial systems for cloning and studying plant, protozoan and mammalian nucleobase transporters of agricultural, pharmacological and medical importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号