首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Female cancer patients who seek fertility preservation but cannot undergo ovarian stimulation and embryo preservation may consider 1) retrieval of immature oocytes followed by in vitro maturation (IVM) or 2) ovarian tissue cryopreservation followed by transplantation or in vitro follicle culture. Conventional IVM is carried out during the follicular phase of menstrual cycle. There is limited evidence demonstrating that immature oocyte retrieved during the luteal phase can mature in vitro and be fertilized to produce viable embryos. While in vitro follicle culture is successful in rodents, its application in nonhuman primates has made limited progress. The objective of this study was to investigate the competence of immature luteal-phase oocytes from baboon and to determine the effect of follicle-stimulating hormone (FSH) on baboon preantral follicle culture and oocyte maturation in vitro. Oocytes from small antral follicle cumulus-oocyte complexes (COCs) with multiple cumulus layers (42%) were more likely to resume meiosis and progress to metaphase II (MII) than oocytes with a single layer of cumulus cells or less (23% vs. 3%, respectively). Twenty-four percent of mature oocytes were successfully fertilized by intracytoplasmic sperm injection, and 25% of these developed to morula-stage embryos. Preantral follicles were encapsulated in fibrin-alginate-matrigel matrices and cultured to small antral stage in an FSH-independent manner. FSH negatively impacted follicle health by disrupting the integrity of oocyte and cumulus cells contact. Follicles grown in the absence of FSH produced MII oocytes with normal spindle structure. In conclusion, baboon luteal-phase COCs and oocytes from cultured preantral follicles can be matured in vitro. Oocyte meiotic competence correlated positively with the number of cumulus cell layers. This study clarifies the parameters of the follicle culture system in nonhuman primates and provides foundational data for future clinical development as a fertility preservation option for women with cancer.  相似文献   

2.
In vitro ovarian follicle culture is a new frontier in assisted reproductive technology with tremendous potential, especially for fertility preservation. Folliculogenesis within the ovary is a complex process requiring interaction between somatic cell components and the oocyte. Conventional two-dimensional culture on tissue culture substrata impedes spherical growth and preservation of the spatial arrangements between oocyte and surrounding granulosa cells. Granulosa cell attachment and migration can leave the oocyte naked and unable to complete the maturation process. Recognition of the importance of spatial arrangements between cells has spurred research in to three-dimensional culture system. Such systems may be vital when dealing with human primordial follicles that may require as long as three months in culture. In the present work we review pertinent aspects of in vitro follicle maturation, with an emphasis on tissue-engineering solutions for maintaining the follicular unit during the culture interval. We focus primarily on presenting the various 3-dimensional culture systems that have been applied for in vitro maturation of follicle:oocyte complexes. We also try to present an overview of outcomes with various biomaterials and animal models and also the limitations of the existing systems.  相似文献   

3.
4.
The availability of viable oocytes is the limiting factor in the development of new reproductive techniques. Many attempts have been made to grow immature oocytes in vitro during recent decades. Recently, a modified alginate-based three-dimensional culture system was designed to support the growth and maturation of multilayered secondary follicles. This system was able to produce oocytes that successfully completed meiosis, fertilization, and development to the blastocyst stage. Subsequent attempts to culture two-layered secondary follicles were unsuccessful under the original conditions. Herein, we investigated the effect of alginate consistency on two-layered follicle growth and oocyte developmental competence by encapsulating follicles into alginate scaffolds of various concentrations. Although there were no significant differences in survival rates, 0.25% and 0.5% alginate supported more rapid growth of follicles and antrum formation compared with 1.5% and 1.0% alginate after 8 days of culture. Alginate scaffold concentration also affected the proliferation and differentiation of somatic cells (theca and granulosa cells), measured in terms of morphological changes, steroid profiles (androstenedione, estradiol, and progesterone), and specific molecular markers (Fshr, Lhcgr, and Gja1). Theca cell proliferation and steroid production were hindered in follicles cultured in 1.5% alginate. In vitro fertilization and embryo culture revealed that oocytes obtained from 0.25% alginate retained the highest developmental competence. Overall, the present study showed that the alginate scaffold consistency affects folliculogenesis and oocyte development in vitro and that the alginate culture system can and should be tailored to maximally support follicle growth depending on the size and stage of the follicles selected for culture.  相似文献   

5.
The equine oocyte: Factors affecting meiotic and developmental competence   总被引:1,自引:0,他引:1  
There is currently much interest in assisted reproduction techniques in the horse, however, many aspects of oocyte maturation, fertilization, and embryo development in the horse differ from those in other species. Because of the close attachment of the equine oocyte to the follicle wall, scraping of the follicle is the most effective method for oocyte recovery. A notable feature of equine oocytes is that those with expanded cumuli (Ex oocytes), which originate from atretic follicles, have higher meiotic competence (ability to mature to metaphase II in vitro) than do oocytes with compact cumuli (Cp oocytes). Cp oocytes originate in viable follicles but are largely juvenile. Recovery and culture of equine oocytes immediately after slaughter yields a higher maturation rate than that obtained from oocytes after ovary storage; this is related to damage to chromatin in Cp oocytes during storage. In contrast, developmental competence (rate of blastocyst development in vitro) is higher in oocytes recovered from the ovary after a delay. The optimum duration of maturation varies based on cumulus morphology and time of recovery from the ovary, but there is no difference in developmental competence between Ex and Cp oocytes. Because standard in vitro fertilization is not repeatable in the horse, oocyte transfer (surgical transfer of oocytes to the oviducts of inseminated mares) has been developed to allow fertilization of isolated oocytes. Fertilization in vitro may be achieved using intracytoplasmic sperm injection; culture of injected oocytes in a medium with high glucose can yield over 30% blastocyst development. Mol. Reprod. Dev. 77: 651–661, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
The number of follicles undergoing atresia in an ovary is very high, and isolation of cumulus-oocyte complexes (COCs) from such atretic follicles may impair subsequent embryo development in vitro. Our aim was to study if stringent selection by morphological assessment of COCs can improve embryo development, and to evaluate whether oocyte diameter is related with apoptotic ratio in oocytes and blastocysts. COCs from slaughtered cattle were recovered by follicle aspiration and classified depending on oocyte diameter: (A) <110 microm; (B) 110-120 microm; (C) >120 microm. COCs were matured, fertilized and cultured in vitro. Early and late stages of apoptosis were detected by Annexin-V and TUNEL staining, respectively, in denuded oocytes, COCs and blastocysts. Immature oocytes from Group A showed higher apoptotic ratio assessed by TUNEL assay, and the COCs corresponding to this group also showed a higher proportion of apoptotic cumulus cells. After maturation, no differences were present in the incidence of apoptosis among oocytes from different groups, but COCs corresponding to the largest diameter showed less apoptotic cumulus cells. In addition, the percentage of apoptotic oocytes decreased during in vitro maturation in all groups. Apoptotic cell ratio (ACR) in blastocysts was not related to oocyte diameter. In conclusion, oocyte selection and oocyte morphological evaluation prior to maturation was not sufficient to select non-atretic oocytes. When oocyte diameter was used as an additional selection the embryonic developmental potential increased together with oocyte diameter, but this improvement was not related to a lower incidence of apoptosis in the largest oocytes.  相似文献   

8.
The aim of the present study was to assess the role of follicle stimulating hormone (FSH), epidermal growth factor (EGF) or a combination of EGF and FSH on the in vitro growth of porcine preantral follicles, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. Porcine preantral follicles were cultured for 3 days in the absence or in the presence of FSH or EGF. Oocytes from these follicles were then matured, fertilized in vitro and embryos were cultured. Estradiol secretion and histological analysis of cultured follicles were also carried out. The results showed that when FSH, or a combination of EGF and FSH, was added to the culture medium, most of preantral follicles grew to antral follicles with high estradiol secretion and the oocytes from these antral follicles could mature, fertilize and develop to the blastocyst stage. Without FSH, or a combination of EGF and FSH, preantral follicles were unable to develop to the antral stage. Histology demonstrated that the resulting follicles were nonantral, estradiol production was reduced and none of their oocytes matured after in vitro maturation. The results indicate the essential role of FSH in promoting in vitro growth of porcine preantral follicle, estradiol secretion, antrum formation, oocyte maturation and subsequent embryonic development. EGF with FSH treatment of porcine preantral follicles improves the quality of oocytes, shown by a higher frequency of embryonic development.  相似文献   

9.
This study was conducted to identify an in vitro culture system that would support intact porcine follicle growth from preantral follicle to antral stages, oocyte maturation, fertilization, and embryonic development; and to evaluate factors that influence porcine preantral follicle growth in vitro. Preantral follicles isolated from prepubertal porcine ovaries were cultured for 4 days in the presence of different concentrations of porcine serum and FSH, and with different numbers of follicles per well. A series of experiments showed that porcine antral follicles can be grown at a high frequency in vitro from healthy preantral follicles with intact theca when cultured in North Carolina State University 23 medium supplemented with 1.5 ng/ml FSH, 7.5% serum, and when cultured with three follicles per well. After 4 days of culture, 68% healthy cumulus-enclosed oocytes from these follicles were obtained, and 51% of the oocytes completed meiotic maturation to the metaphase II stage. Fifty-three percent of the mature oocytes underwent fertilization, 43% of the fertilized oocytes cleaved, and 13% developed to the blastocyst stage. The results show 1) that porcine preantral follicles can grow efficiently to the antral stage using these culture conditions, and 2) that oocytes from in vitro-matured porcine preantral follicles can acquire meiotic competence and undergo fertilization and embryonic development.  相似文献   

10.
Trichlorfon (TCF), an organophosphate insecticide and potent inhibitor of choline esterases, was previously shown to induce first meiotic nondisjunction and spindle aberrations in isolated, follicle cell-denuded mouse oocytes maturing in vitro. To explore dose-response and direct and indirect, potentially synergistic effects of TCF on the somatic cells and the oocyte within a follicle, we presently employed preantral follicle culture. 100 microg/ml TCF added at the time of hormonally stimulated resumption of meiosis of follicle cell-enclosed mouse oocytes, 16 h before in vitro ovulation, induced significant rises in first meiotic nondisjunction in oocytes from preantral follicle culture. Lower concentrations (6 microg/ml TCF) disturbed polar body formation. Nuclear maturation to meiosis II in absence of cytokinesis resulted in significant increases in polyploidy. Oocytes maturing in follicles in the presence of TCF had aberrant second meiotic spindles. Influences of TCF on somatic cell function were evident by reduced follicular mucification in vitro and deceased progesterone production. In contrast to TCF, acetylcholine (0.1-100 microM) increased progesterone production. The observations therefore suggest that TCF influences oocyte maturation and folliculogenesis directly and indirectly. High TCF is aneugenic at first meiotic division in oocytes, irrespective of the presence or absence of follicle cells. At lower concentrations TCF interferes with spindle formation, chromosome congression at meiosis II, and coordination of nuclear and cytoplasmic maturation, posing risks for second meiotic errors. The observations suggest that chronic TCF exposure during maturation in the follicle may predispose oocytes to the formation of chromosomally unbalanced preimplantation embryos after fertilization.  相似文献   

11.
Coy P  Ruiz S  Romar R  Campos I  Gadea J 《Theriogenology》1999,51(4):799-812
This study was designed 1) to determine the effectiveness of 2 in vitro maturation systems commonly employed to produce nuclear and cytoplasmically mature pig oocytes, 2) to assess the effects of boar, sperm concentration and maturation system on oocyte penetrability and male pronucleus formation and 3) to determine the ability of the in vitro matured oocytes to be fertilized in vivo by artificial insemination (AI) of sows. The differences examined between the 2 maturation systems included the culture medium (Waymouth vs TCM199), hormones, additives, culture conditions (static vs gentle agitation) presence or absence of porcine follicular fluid (PFF) and presence or absence of follicular shells. The results showed that nuclear maturation rate was similar in both systems (83.3 +/- 3.5 vs 86.4 +/- 2.5%), and intracellular content of glutathione was 5.21 +/- 0.73 vs 3.5 +/- 0.39 pmol/oocyte, although no correlation between these parameters was observed. The penetration rate and number of sperm cells per oocyte were dependent on the boar, maturation system and sperm concentration, but the rate of male pronuclear formation seemed to be influenced only by the boar and the maturation system but not by sperm concentration. In vivo fertilization of in vitro matured oocytes showed that both maturation systems could yield viable oocytes since 3 of 4 gilts and 2 of 4 gilts, respectively, became pregnant. Failure to become pregnant was not associated with inadequate oocyte maturation since control gilts, which received their own ovulated oocytes rather than in vitro matured oocytes at transfer, also did not become pregnant. We conclude that polyspermy may be an inherent problem in the IVF but not in the IVM systems.  相似文献   

12.
Current in vitro culture systems may not be adequate to support maturation, fertilization and embryo development of calf oocytes. Thus, we initiated a study to investigate an alternative method of assessing oocyte competence in vivo, initially using oocytes from adults. Experiment 1 was done to determine if follicle puncture would alter subsequent follicle development, ovulation and CL formation. In control (no follicle puncture, n = 3) and treated (follicle puncture, n = 3) heifers, ultrasound-guided transvaginal follicle aspiration was used to ablate all follicles > or = 5 mm at random stages of the estrous cycle to induce synchronous follicular wave emergence among heifers; PGF2 alpha was given 4 d later. Three days after PGF2 alpha, the preovulatory follicle in treated heifers was punctured with a 25-g needle between the exposed and nonexposed portions of the follicular wall, and 200 microL of PBS were infused into the antrum. There was no significant difference between control and treated heifers for mean diameter of the dominant follicle prior to ovulation, the interval to ovulation following PGF2 alpha, or first detection and diameter of the CL. Experiment 2 was designed to assess multiple embryo production following interfollicular transfer of oocytes (i.e., transfer of multiple oocytes from donor follicles to a single recipient preovulatory follicle). Follicular wave emergence was synchronized among control (no follicle puncture, n = 5), oocyte recipient (n = 7) and oocyte donor (n = 5) heifers as in Experiment 1. In control and oocyte recipient heifers, a norgestomet ear implant was placed at the time of ablation and removed 4 d later, at the second PGF2 alpha treatment. In oocyte donor heifers, FSH was given the day after ablation, and, 4 d later, oocytes were collected by transvaginal follicle aspiration, pooled and placed in holding medium. Five or 6 oocytes were loaded into the 25-g needle of the follicle infusion apparatus with < or = 200 microL of transfer medium. Puncture of the preovulatory follicle of recipient heifers was done as in Experiment 1. Immediately thereafter, LH was given to control and oocyte recipient heifers, but only the recipients were inseminated. Ovarian function was assessed by transrectal ultrasonography and control and oocyte recipient heifers were sent to the abattoir 2 or 3 d after ovulation, where excised oviducts were flushed. The interval between LH administration and ovulation (33 to 36 h) was highly synchronous within and among control and oocyte recipient heifers. Four of 5 (80%) ova were collected from controls and 16 of a potential 43 (37%) ova/embryos were recovered from oocyte recipients; 8 embryos from 3 heifers. Thus, the gamete recovery and follicular transfer procedure (GRAFT) did not alter ovulation or subsequent CL formation, and resulted in the recovery of multiple ova/embryos in which a total of 19 oocytes yielded as many as 8 early embryos, a 42% embryo production rate.  相似文献   

13.
The study of in vitro maturation (IVM) of rhesus monkey oocytes has important implications for biomedical research and human infertility treatment. In vitro-matured rhesus monkey oocytes show much less developmental potential than IVM oocytes of other species. Since about 1980 when rhesus monkey IVM, in vitro fertilization (IVF) and in vitro embryo culture (IVC) systems were established, numerous efforts have been made to improve the developmental competence of oocytes and to understand the mechanisms regulating oocyte maturation. This review describes recent progress in this area, particularly the effects of factors such as steroid hormones, energy substrates, amino acids, ovarian follicle status, maternal age and breeding season on the developmental competence, gene expression patterns and genome integrity of rhesus IVM oocytes.  相似文献   

14.
Oocyte developmental competence is acquired throughout folliculogenesis and is associated with appropriate differentiation and responsiveness to the luteinizing hormone (LH) surge. The recent development of a novel system for culturing ovarian follicles in a three-dimensional alginate matrix shows promise in phenocopying in vivo folliculogenesis. However, oocytes from follicles grown in vitro have a reduced capacity to complete nuclear maturation and be fertilized compared to oocytes matured in vivo. Oocyte metabolism is closely linked with oocyte quality, and we have recently shown that beta-oxidation of lipids is essential for oocyte developmental competence. Thus we investigated whether upregulation of beta-oxidation by treatment with the fatty acid transport cofactor l-carnitine could improve folliculogenesis and developmental competence of mouse follicles following three-dimensional culture. Ovarian hormones (androstenedione, estradiol, and progesterone) and the induction of cumulus matrix proteins (hyaluronan and ADAMTS1) were similar to in vivo follicles, indicating that appropriate differentiation of follicular cells occurs in cultured follicles after an LH/human chorionic gonadotropin (hCG) stimulus. l-carnitine did not alter survival, growth, or differentiation of follicles. However, l-carnitine supplementation significantly increased beta-oxidation, and markedly improved both fertilization rate and blastocyst development. Together, these results show that appropriate responsiveness of the follicle to the LH/hCG surge occurs following three-dimensional follicle culture but limitations on key metabolic requirements remain. l-carnitine supplementation during in vitro follicle culture increased lipid metabolism and improved oocyte developmental competence.  相似文献   

15.
Culture of preantral follicles has important biotechnological implications through its potential to produce large quantities of oocytes for embryo production and transfer. A long-term culture system for bovine preantral follicles is described. Bovine preantral follicles (166 +/- 2.15 micrometer), surrounded by theca cells, were isolated from ovarian cortical slices. Follicles were cultured under conditions known to maintain granulosa cell viability in vitro. The effects of epidermal growth factor (EGF), insulin-like growth factor (IGF)-I, FSH, and coculture with bovine granulosa cells on preantral follicle growth were analyzed. Follicle and oocyte diameter increased significantly (P < 0.05) with time in culture. FSH, IGF-I, and EGF stimulated (P < 0.05) follicle growth rate but had no effect on oocyte growth. Coculture with granulosa cells inhibited FSH/IGF-I-stimulated growth. Most follicles maintained their morphology throughout culture, with the presence of a thecal layer and basement membrane surrounding the granulosa cells. Antrum formation, confirmed by confocal microscopy, occurred between Days 10 and 28 of culture. The probability of follicles reaching antrum development was 0.19 for control follicles. The addition of growth factors or FSH increased (P < 0.05) the probability of antrum development to 0.55. Follicular growth appeared to be halted by slower growth of the basement membrane, as growing follicles occasionally burst the basement membrane, extruding their granulosa cells. In conclusion, a preantral follicle culture system in which follicle morphology can be maintained for up to 28 days has been developed. In this system, FSH, EGF, and IGF-I stimulated follicle growth and enhanced antrum formation. This culture system may provide a valuable approach for studying the regulation of early follicular development and for production of oocytes for nuclear/embryo transfer, but further work is required.  相似文献   

16.
17.
So far, standard follicle culture systems can produce blastocyst from less than 40% of the in vitro matured oocytes compared to over 70% in the in vivo counterpart. Because the capacity for embryonic development is strictly associated with the terminal stage of oocyte growth, the nuclear maturity status of the in vitro grown oocyte was the subject of this study. Mouse early preantral follicles (100-130 microm) and early antral follicles (170-200 microm) isolated enzymatically were cultured for 12 and 4 days, respectively, in a collagen-free dish. The serum-based media were supplemented with either 100 mIU/ml FSH (FSH only); 100 mIU/ml FSH + 10 mIU/ml LH (FSH-LH); 100 mIU/ml FSH + 1 mIU/ml GH (FSH-GH) or 100 mIU/ml FSH + 100 ng/ml activin A (FSH-AA). Follicle survival was highest in follicle stimulating hormone (FSH)-AA group in both cultured preantral (91.8%) and antral follicles (82.7%). Survival rates in the other groups ranged between 48% (FSH only, preantral follicle culture) and 78.7% (FSH only, antral follicle culture). Estradiol and progesterone were undetectable in medium lacking gonadotrophins while AA supplementation in synergy with FSH caused increased estradiol secretion and a simultaneously lowered progesterone secretion. Chromatin configuration of oocytes from surviving follicles at the end of culture revealed that there were twice more developmentally incompetent non-surrounded nucleolus (NSN) oocytes (>65%) than the competent surrounded nucleolus (SN) oocytes (<34%). We conclude that the present standard follicle culture system does not produce optimum proportion of developmentally competent oocytes.  相似文献   

18.
In vivo studies on folliculogenesis have documented a relation among intrafollicular steroid content, follicle growth, and oocyte development. This study examined how profound changes in androgen/estrogen ratio would affect mouse in vitro follicular development. Arimidex, a potent follicular aromatase inhibitor was used for this purpose. Early preantral follicles were cultured for 12 days up to the preovulatory stage. Oocyte's meiotic maturation, spindle and chromosome configurations, in vitro fertilization and preimplantation embryo development were evaluated. Compared to controls, Arimidex reduced E2 concentration in follicle culture medium by a factor 1000, and an expected simultaneous accumulation of testosterone was measured in the conditioned medium. Arimidex treatment provoked a dose-dependent earlier differentiation of the granulosa cells as judged by an earlier antrallike cavity formation and slightly elevated basal progesterone secretion. Follicle survival exceeded 98% in all groups and all follicles responded normally to HCG/EGF addition on day 12 by cumulus mucification. By the HCG ovulatory challenge, progesterone output was reduced in Arimidex supplemented groups suggesting preovulatory luteinization. These results indicate that in vitro mouse follicles can develop normally under very low levels of estrogens and that a local androgen increase by a factor 3 is not atretogenic. Oocyte growth did not differ among culture conditions. Arimidex treatment induced a dose dependent enhancement of GVBD and polar body formation rate in response to HCG at the end of culture. Spindle and chromosome analyses demonstrated that in all groups, 90% of the oocytes which extruded a polar body had also reached the MII stage. While most of the cultured MII oocytes had a normal spindle and well aligned chromosomes, significantly less oocytes were fertilized in the groups cultured in the presence of Arimidex. Once fertilized, however, there was found to be no difference for preimplantation embryo development between controls and Arimidex treatment. These data suggest that in mice a pronounced estrogenic environment is not essential for in vitro folliculogenesis. Drastic changes in the intrafollicular steroid concentrations do not disrupt meiotic maturation nor compromise early preimplantation development, but adversely affect fertilization of in vitro grown oocytes.  相似文献   

19.
The objective of this study was to determine whether fully grown oocytes, obtained after isolation from preantral follicles and growth in vitro, secrete paracrine factors affecting granulosa cell development and function. If so, the relative ease in producing oocytes in this way could facilitate the identification and characterization of the factors. As a test of this idea, the ability of in vitro grown oocytes to produce a paracrine factor that is known to enable the isolated cumulus oophorus to undergo expansion in response to follicle stimulating hormone (FSH) was determined. Initial experiments compared culture systems, which differed in the orientation of the oocyte-granulosa cell complexes from preantral follicles to an extracellular matrix, for their ability to support oocyte growth and the acquisition of competence to resume meiosis. The systems for culture on the surface of the matrix produced larger oocytes and the highest percentage of oocytes having competence to resume meiosis. Oocytes grown using this system secreted active cumulus expansion enabling factor, albeit at levels about half that of oocytes grown in vivo. A preliminary characterization of the cumulus expansion enabling factor secreted by the oocytes grown in vitro showed that activity was lost upon treatment with either heat (65°C for 15 min) or proteinase K. Activity did not pass through a membrane having a nominal molecular weight limit (NMWL) of 100 kd but did pass through a membrane having a NMWL of 300 kd. It is concluded that cumulus expansion enabling factor is secreted by oocytes grown in vitro. This factor is probably a protein or depends upon a protein for its activity. The ease in obtaining relatively large numbers of GVB-competent oocytes using techniques for growth in vitro combined with the demonstration that these produce cumulus expansion enabling factor indicates that these protocols can be used to produce oocytes for the collection and characterization of oocyte secretory products some of which are paracrine regulators of granulosa cells. © 1993 Wiley-Liss, Inc.  相似文献   

20.
In vitro maturation, fertilization and culture (IVM/IVF/IVC) of cattle oocytes from individual cows requires adapting existing culture protocols so that small numbers of oocytes can be cultured. The culture of single oocytes is desirable for correlating the relationship between follicular properties with oocyte developmental competence or for facilitating ovum pick-up procedures. In Experiment 1 we compared group and single culture under cell-free conditions on embryo development; significantly higher (P<0.001) rates of cleavage (66.4 vs 47.6%) and blastocyst formation (7.5 vs 0.5%) were observed in the group cultured oocytes. In Experiment 2 we compared group and single oocyte co-culture with granulosa cells. Although there was no effect of oocyte number on the percentage cleaving (73.1 vs 66.6%), there were significantly higher blastocyst yields (37.4 vs 10.1%) and blastocyst cell numbers (91.6 vs 66.2) in group-cultured oocytes. In Experiment 3 we examined the effect of group size (1, 5, 10, 20 and 40 oocytes) in a co-culture system using granulosa cell monolayers. The results show a difference in cleavage rates between the single cultured oocytes (66.8%) and each group of cultured oocytes, with the highest cleavage rate (81.5%) obtained in the 20-oocyte group. The blastocyst yield from both cleaved and total oocytes showed that group culture of 20 or 40 oocytes resulted in the highest number of blastocysts (32.5%), with smaller group sizes yielding significantly (P<0.05) fewer blastocysts. In Experiment 4 we examined the effects of co-culture on the development of single vs group-cultured oocytes. The results showed no significant difference (P>0.05) in the cleavage rate between single and group culture systems. No blastocysts were formed with single oocytes cultured without monolayers, while the blastocyst formation rate for those co-cultured with granulosa cells was 12.4%. Blastocyst formation was significantly higher (P < 0.006) in group co-culture on monolayers (24.2 vs 8.5%). These data indicate that oocytes cultured in groups are developmentally more competent and suggest that for optimum development oocytes need some undefined paracrine activity that is absent from the culture medium in addition to coculture with granulosa cells, which enhances development to the blastocyst stage of both group and singly cultured oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号