首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Release of the excitotoxic amino acids, glutamate and aspartate, from the ischemic rat cerebral cortex was compared in two models; the seven vessel occlusion model (7VO) of complete cerebral ischemia and the four vessel occlusion model (4VO) of incomplete cerebral ischemia. Amino acid efflux into cortical superfusates was measured using cortical cups placed on both hemispheres. Whereas a 20 min period of ischemia causes a pronounced release of glutamate and aspartate from the 4VO model, efflux was significantly reduced in the 7VO model. Release of the inhibitory transmitter GABA, was similar in the two models. This result suggests that excitotoxic amino acid efflux into the extracellular spaces of the cerebral cortex may be enhanced by the residual blood flow in an incomplete ischemia.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

2.
The present study is to determine the effect of mild hypothermia (MHT) on the release of glutamate and glycine in rats subjected to middle cerebral artery occlusion and reperfusion. The relationship between amino acid efflux and brain infarct volume was compared in different periods during MHT. Reversible middle cerebral artery occlusion was performed in Sprague-Dawley rats using a suture model. The rats were divided into four groups including (1) MHT during ischemia (MHTi), (2) MHT during reperfusion (MHTr), (3) MHT during ischemia and reperfusion (MHTi + r), and (4) a normothermic group (NT). Extracellular concentrations of glutamate and glycine in the cortex and striatum were monitored using in vivo microdialysis and analyzed using high-performance liquid chromatography. Morphometric measurements for infarct volume were performed using 2,3,5-triphenyltetrazolium chloride staining. The increase of glutamate and glycine in the ischemic cortex of the MHTi and MHTi + r rats during ischemic and reperfusion periods was significantly less than that of the NT rats (p < 0.05). However, there was no statistical difference among these groups in the peak of glutamate and glycine release in the striatum. Infarct volume paralleled the release of glutamate and glycine. The protective effect of MHTi and MHTi + r in reducing ischemia and reperfusion brain injury may be due to the attenuation of both glutamate and glycine release during ischemia and reperfusion.  相似文献   

3.
We have previously described a marked attenuation of postischemic striatal neuronal death by prior substantia nigra (SN) lesioning. The present study was carried out to evaluate whether the protective effect of the lesion involves changes in the degree of local cerebral blood flow (ICBF) reduction, energy metabolite depletion, or alterations in the extracellular release of striatal dopamine (DA), glutamate (Glu), or gamma-aminobutyric acid (GABA). Control and SN-lesioned rats were subjected to 20 min of forebrain ischemia by four-vessel occlusion combined with systemic hypotension. Levels of ICBF, as measured by the autoradiographic method, and energy metabolites were uniformly reduced in both the ipsi- and contralateral striata at the end of the ischemic period, a finding implying that the lesion did not affect the severity of the ischemic insult itself. Extracellular neurotransmitter levels were measured by microdialysis; the perfusate was collected before, during, and after ischemia. An approximately 500-fold increase in DA content, a 7-fold increase in Glu content, and a 5-fold increase in GABA content were observed during ischemia in nonlesioned animals. These levels gradually returned to baseline by 30 min of reperfusion. In SN-lesioned rats, the release of DA was completely prevented, the release of GABA was not affected, and the release of Glu was partially attenuated. However, excessive extracellular Glu concentrations were still attained, which are potentially toxic. This, taken together with the previous neuropathological findings, suggests that excessive release of DA is important for the development of ischemic cell damage in the striatum.  相似文献   

4.
The release of neurotransmitters principally glutamate during cerebral ischemia has been extensively studied. It is well recognized that ischemia induced release of glutamate plays a key role in “excitotoxic” neuronal death. The role of monoaminergic neurotransmitters is however unclear. The purpose of this study was to evaluate the extracellular norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA) and serotonin (5-HT) under varied degrees of ischemia in the acute focal ischemic model of the human brain by in-vivo microdialysis. The ischemic response of these amines was correlated with the glutamate levels. Our study concludes that these amines and metabolites can be detected in the human “stroke” model. No marked fluctuations were noted in the levels of norepinephrine and DOPAC. However, significant changes to partial and total ischemia were noted in the extracellular levels of 5-HIAA and 5-HT. These compounds showed a dramatic increase with the onset of ischemia with higher detectable levels in the partial ischemic state in comparison to the total ischemic dialysate levels. The exact role played by the differential increase in the levels of 5-HT to the other catecholamines in the pathogenesis of ischemic neuronal damage remains unclear and warrants further study.  相似文献   

5.
The effects of a potent adenosine deaminase inhibitor, deoxycoformycin, on purine and amino acid neuro-transmitter release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (20 min) was elicited by four-vessel occlusion. Purine and amino acid releases were compared from control ischemic animals and deoxycoformycin-pretreated ischemic rats. Ischemia enhanced the release of glutamate, aspartate, and gamma-aminobutyric acid into cortical perfusates. The levels of adenosine, inosine, hypoxanthine, and xanthine in the same perfusates were also elevated during and following ischemia. Deoxycoformycin (500 micrograms/kg) enhanced ischemia-evoked release of adenosine, indicating a marked rise in the adenosine content of the interstitial fluid of the cerebral cortex. Inosine, hypoxanthine, and xanthine levels were depressed by deoxycoformycin. Deoxycoformycin pretreatment failed to alter the pattern of amino acid neurotransmitter release from the cerebral cortex in comparison with that observed in control ischemic animals. The failure of deoxycoformycin to attenuate amino acid neurotransmitter release, even though it markedly enhanced adenosine levels in the extracellular space, implies that the amino acid release during ischemia occurs via an adenosine-insensitive mechanism. Inhibition of excitotoxic amino acid release is unlikely to be responsible for the cerebroprotective actions of deoxycoformycin in the ischemic brain.  相似文献   

6.
The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak.  相似文献   

7.
Abstract: Although considerable evidence supports a role for amino acids in transient global cerebral ischemia and permanent focal cerebral ischemia, effects of transient focal cerebral ischemia on the extracellular concentrations of amino acids have not been reported. Accordingly, our study was undertaken to examine the patterns of changes of extracellular glutamate, aspartate, GABA, taurine, glutamine, alanine, and phosphoethanolamine in the striatum of transient focal cerebral ischemia, as evidence to support their pathogenic roles. Focal ischemia was induced using the middle cerebral artery occlusion model, with no need for craniotomy. Microdialysis was used to sample the brain's extracellular space before, during, and after the ischemic period. One hour of middle cerebral artery occlusion followed by recirculation caused neuronal damage that was common in the frontoparietal cortex and the lateral segment of the caudate nucleus. During 1 h of ischemia, the largest increase occurred for GABA and moderate increases were observed for taurine, glutamate, and aspartate. Alanine, which is a nonneuroactive amino acid, increased little. After recirculation, the levels of glutamate and aspartate reverted to normal baseline values right after reperfusion. Despite these rapid normalizations, neuronal damage occurred. Therefore, uptake of excitatory amino acids can still be restored after 1 h of middle cerebral artery occlusion, and tissue damage occurs even though high extracellular levels of glutamate are not maintained.  相似文献   

8.
The beneficial effect of hemodilution on cerebral blood flow (CBF) during focal cerebral ischemia is mitigated by reduced arterial oxygen content (CaO2). In anesthetized cats subjected to permanent middle cerebral artery occlusion, the time course of regional CBF was evaluated after isovolemic exchange transfusion with either albumin or a tetrameric hemoglobin-based oxygen carrier. The transfusion started 30 min after arterial occlusion. We tested the hypothesis that bulk oxygen transport (CBF x CaO2) to ischemic tissue is increased by hemoglobin transfusion at a hematocrit of 18% compared with albumin-transfused cats at a hematocrit of 18% or control cats at a hematocrit of 30% and equivalent arterial pressure. In the nonischemic hemisphere, CBF increased selectively after albumin transfusion, and oxygen transport was similar among groups. In the ischemic cortex, albumin transfusion increased CBF, but oxygen transport was not increased above that of the control group. Hemoglobin transfusion increased both CBF and oxygen transport in the ischemic cortex above values in the control group, but the increase was delayed until 4 h of ischemia. Consequently, acute injury volume measured at 6 h of ischemia was not significantly attenuated. In contrast to the cortex, CBF in the ischemic caudate nucleus was not substantially increased by either albumin or hemoglobin transfusion. Therefore, in a large animal model of permanent focal ischemia in which transfusion starts 30 min after ischemia, tetrameric cross-linked hemoglobin transfusion can augment oxygen transport to the ischemic cortex, but the increase can be delayed and not necessarily provide protection. Moreover, an end-artery region such as the caudate nucleus is less likely to benefit from hemodilution.  相似文献   

9.
10.
Bcl-2 family of proteins plays differential roles in regulation of mitochondria-mediated apoptosis, by either promoting or inhibiting the release of apoptogenic molecules from mitochondria to cytosol. Bcl-2 family proteins modulate the mitochondrial permeability through interaction with adenine nucleotide translocator (ANT), voltage-dependent anion channel (VDAC), ADP/ATP exchange, or oxidative phosphorylation during apoptosis. Although the mitochondrial homeostasis is affected by the relative ratio of pro- and anti-apoptotic Bcl-2 family members, the molecular mechanism underlying the release of mitochondrial intermembrane proteins remains elusive. Here we reported the biochemical evidence that both pro-apoptotic Bax and anti-apoptotic Bcl-X(L) might simultaneously contact the putative loop regions of human VDAC1, and the existence of VDAC1-Bax-Bcl-X(L) tertiary complex in vitro suggested that VDAC1 channel conformation and mitochondrial permeability could be determined by the delicate balance between Bax and Bcl-X(L).  相似文献   

11.
Unilateral 6-hydroxydopamine lesion of the substantia nigra reduced the volume of striatal necrosis and suppressed the increase in extracellular glutamate concentration in the striatum induced by middle cerebral artery occlusion in rats. These results indicate that the dopaminergic nigrostriatal pathway is highly involved in the vulnerability of the striatum to ischemia and suggest that glutamate-dopamine interactions may play a key role in the striatal ischemic insult.  相似文献   

12.
Interest is growing in the role of adenosine triphosphate (ATP) on P2 receptors during hypoxic/ischemic events in the brain. However, there is no direct evidence of an increase in extracellular ATP levels during cerebral ischemia in vivo. The aim of the present study was to evaluate ATP outflow from the rat striatum by the microdialysis technique associated with focal cerebral ischemia in vivo by intraluminal occlusion of the right middle cerebral artery (MCA). Between 1 and 4h after ischemia, rats showed a clear turning behavior contralateral to the ischemic side. Twenty-four hour after MCA occlusion, ischemic rats had definite neurological deficit and striatal and cortical damage. The ATP concentration (mean+/-S.E.M.) in the striatum of normoxic rats (n = 8) was 3.10+/-0.34 nM. During 220 min after MCA occlusion, the extracellular ATP levels significantly increased two-fold, being 5.90+/-0.61 nM (p < 0.01 versus normoxic level). ATP outflow showed a tendency to increase over time during the 220 min of ischemia. Since extracellular ATP is rapidly metabolized to adenosine, we also assessed ATP outflow in the presence of the ecto-5'-nucleotidase inhibitor, alpha,beta-methylene-adenosine diphosphate (AOPCP, 1 mM) directly perfused into the striatum. The ATP concentration in normoxic rats (n = 8) was increased three-fold in the presence of the ecto-5'-nucleotidase inhibitor (9.57+/-0.26 nM). During 220 min of ischemia, extracellular ATP levels significantly increased 1.3-fold in AOPCP-treated rats (12.62+/-0.65 nM, p < 0.01 versus normoxic level). The present study confirms that ATP is continuously released in the brain and demonstrates for the first time that ATP outflow increases during ischemia in vivo. These results confirm that ATP may be an important mediator in brain ischemia.  相似文献   

13.
Glutamate release and neuronal damage in ischemia.   总被引:54,自引:0,他引:54  
Y Nishizawa 《Life sciences》2001,69(4):369-381
Neuronal injury caused by ischemia after occlusion of cerebral arteries is believed to be mediated by excessive activation of glutamate receptors. In the ischemic brain, extracellular glutamate is elevated rapidly after the onset of ischemia and declines following reperfusion. The mechanisms of the elevation of extracellular glutamate include enhanced efflux of glutamate and the reduction of glutamate uptake. The early efflux of glutamate occurring immediately after the onset of ischemia is mediated by a calcium-dependent process through activation of voltage-dependent calcium channels. The calcium-independent efflux at later stages is thought to be mediated primarily by glutamate transporters operating in the reverse mode owing to the imbalance of sodium ions across plasma membranes. Although high levels of glutamate in the extracellular space are well established to appear rapidly after the onset of ischemia, a direct linkage between the enhanced release of glutamate and the neuronal injury has not been fully established. In cultured neurons, ischemia induces efflux of glutamate into the extracellular space, but subsequent neuronal loss is not solely caused by the high glutamate concentration. In addition, cultured neurons can be rescued by NMDA antagonists added to the medium after exposure to glutamate receptor agonists. Two mechanisms can be proposed for neuroprotection by late NMDA receptor blockade, i.e., blocking of presynaptic release of glutamate after excessive activation of glutamate receptors, and blocking of postsynaptic sensitization of NMDA receptors.  相似文献   

14.
Excitotoxicity due to glutamate receptor over-activation is one of the key mediators of neuronal death after an ischemic insult. Therefore, a major function of astrocytes is to maintain low extracellular levels of glutamate. The ability of astrocytic glutamate transporters to regulate the extracellular glutamate concentration depends upon the hyperpolarized membrane potential of astrocytes conferred by the presence of K+ channels in their membranes. We have previously shown that TREK-2 potassium channels in cultured astrocytes are up-regulated by ischemia and may support glutamate clearance by astrocytes during ischemia. Thus, herein we determine the mechanism leading to this up-regulation and assess the localization of TREK-2 channels in astrocytes after transient middle cerebral artery occlusion. By using a cell surface biotinylation assay we confirmed that functional TREK-2 protein is up-regulated in the astrocytic membrane after ischemic conditions. Using real time RT-PCR, we determined that the levels of TREK-2 mRNA were not increased in response to ischemic conditions. By using Western blot and a variety of protein synthesis inhibitors, we demonstrated that the increase of TREK-2 protein expression requires De novo protein synthesis, while protein degradation pathways do not contribute to TREK-2 up-regulation after ischemic conditions. Immunohistochemical studies revealed TREK-2 localization in astrocytes together with increased expression of the selective glial marker, glial fibrillary acidic protein, in brain 24 hours after transient middle cerebral occlusion. Our data indicate that functional TREK-2 channels are up-regulated in the astrocytic membrane during ischemia through a mechanism requiring De novo protein synthesis. This study provides important information about the mechanisms underlying TREK-2 regulation, which has profound implications in neurological diseases such as ischemia where astrocytes play an important role.  相似文献   

15.
Glutamate is implicated in neuronal cell death. Exogenously applied DOPA by itself releases neuronal glutamate and causes neuronal cell death in in vitro striatal systems. Herein, we attempt to clarify whether endogenous DOPA is released by 10 min transient ischemia due to four-vessel occlusion during rat striatal microdialysis and, further, whether DOPA, when released, functions to cause glutamate release and resultant delayed neuronal cell death. Ischemia increased extracellular DOPA, dopamine, and glutamate, and elicited neuronal cell death 96 h after ischemic insult. Inhibition of striatal L-aromatic amino acid decarboxylase 10 min before ischemia increased markedly basal DOPA, tripled glutamate release with a tendency of decrease in dopamine release by ischemia, and exaggerated neuronal cell death. Intrastriatal perfusion of 10-30 nM DOPA cyclohexyl ester, a competitive DOPA antagonist, 10 min before ischemia, concentration-dependently decreased glutamate release without modification of dopamine release by ischemia. At 100 nM, the antagonist elicited a slight ceiling effect on decreases in glutamate release by ischemia and protected neurons from cell death. Glutamate was released concentration-dependently by intrastriatal perfusion of 0.3-1 mM DOPA and stereoselectively by 0.6 mM DOPA. The antagonist elicited no hypothermia during and after ischemia. Endogenously released DOPA is an upstream causal factor for glutamate release and resultant delayed neuronal cell death by brain ischemia in rat striata. DOPA antagonist has a neuroprotective action.  相似文献   

16.
One hour of ischemia significantly increased protein S100B release from rat brain slices without altering lactate dehydrogenase leakage. Reoxygenation of the ischemic slices, however, increased the levels of these biochemical markers in the medium. Although removal of extracellular Ca+2 ions from the medium did not alter the basal lactate dehydrogenase leakage from cortical slices, an excessive increase in basal protein S100B release was seen under this condition. Ischemia and/or reoxygenation induced enhancements in these markers were attenuated by removal of Ca+2 ions from the medium. Ischemia significantly increased glutamate release, but neither ischemia nor reoxygenation induced rises in protein S100B and lactate dehydrogenase levels were altered by glutamate receptor antagonists. Rising the glutamate levels in the medium by each ouabain or exogenous glutamate, moreover, failed in exerting an ischemia like effect on protein S100B and LDH outputs. In contrast, exogenous glutamate added into the medium protected the slices against reoxygenation induced increments in protein S100B and lactate dehydrogenase levels.

These results indicate that protein S100B has a greater sensitivity against ischemia than lactate dehydrogenase in in vitro brain slice preparations. Since neither exogenous glutamate nor enhancements of the extracellular glutamate levels by ouabain had an ischemia like effect, and since glutamate receptor antagonists were also unsuccessful, it seems unlikely that ischemia-induced increase in glutamate release is directly involved in protein S100B release or lactate dehydrogenase leakage determined in the present study.  相似文献   


17.
The excitatory amino acids (EAA) like glutamate, aspartate and inhibitory neurotransmitter GABA (gama amino butyric acid) play an important role in the pathophysiology of cerebral ischemia. The objective of the present study is to elucidate the role of endogenous GABA against EAA release in different regions during ischemia. The transient focal ischemia was induced in rats by using middle cerebral artery occlusion model (MCAo). The results indicate gradual elevation of brain glutamate, aspartate and GABA level at different brain regions and attained peak level at 72 h of ischemic reperfusion (IR). At 168 h of IR the EAA levels declined to base line but GABA level was found to be still elevated. The biochemical analysis shows the depleted brain ATP, Na+K+ATPase content and triphasic response of glutathione activity. It can be concluded that time dependent variation in the EAA and GABA release, endogenous GABA can be neuroprotective and earlier restoration of energy deprivation is essential to prevent further neurodegeneration. To have efficient treatment in ischemic condition, multiple approaches like energy supply, antagonism of EAA, controlling calcium function are essential.  相似文献   

18.
Excitatory amino acid release and neurotoxicity in the ischemic brain may be reduced by endogenously released adenosine which can modulate both glutamate or aspartate release and depress neuronal excitability. The present study reports on the patterns of release of glutamate and aspartate; the inhibitory amino acids GABA and glycine; and of the purine catabolites adenosine and inosine from the rat parietal cerebral cortex during 20 and 60 min periods of middle cerebral artery (MCA) occlusion followed by reperfusion. Aspartate and glutamate efflux into cortical superfusates rose steadily during the period of ischemia and tended to increase even further during the subsequent 40 min of reperfusion. GABA release rose during ischemia and declined during reperfusion, whereas glycine efflux was relatively unchanged during both ischemia and reperfusion. Adenosine levels in cortical superfusates rose rapidly at the onset of ischemia and then declined even though MCA occlusion was continued. Recovery to pre-occulusion levels was rapid following reperfusion. Inosine efflux also increased rapidly, but its decline during reperfusion was slower than that of adenosine.  相似文献   

19.
Summary. Ischemic incubation significantly increased amino acid release from rat striatal slices. Reoxygenation (REO) of the ischemic slices, however, enhanced only taurine and citrulline levels in the medium. Ischemia-induced increases in glutamate, taurine and GABA outputs were accompanied with a similar amount of decline in their tissue levels. Tissue final aspartic acid level, however, was doubled by ischemia. Lactate dehydrogenase (LDH) leakage was not altered by ischemia, but enhanced during REO. Presence of tetrodotoxine (TTX) during ischemic period caused significant decline in ischemia-induced glutamate output, but not altered REO-induced LDH leakage. Although omission of extracellular calcium ions from the medium during ischemic period protected the slices against REO-induced LDH leakage, this treatment failed to alter ischemia-induced glutamate and GABA outputs. The release of other amino acids, however, declined 50% in calcium-free medium. Blockade of the glutamate uptake transporter by L-trans-PDC, on the other hand, doubled ischemia induced glutamate and aspartic acid outputs. These results indicate that more than one mechanisms probably support the ischemia-evoked accumulation of glutamate and other amino acids in the extracellular space. Although LDH leakage enhanced during REO, processes involved in this increment were found to be dependent on extracellular calcium ions during ischemia but not REO period.  相似文献   

20.
Blood glutamate scavenging is a novel and attractive protecting strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. Glutamate oxaloacetate transaminase 1 (GOT1) activation by means of oxaloacetate administration has been used to reduce the glutamate concentration in the blood. However, the protective effect of the administration of the recombinant GOT1 (rGOT1) enzyme has not been yet addressed in cerebral ischemia. The aim of this study was to analyze the protective effect of an effective dose of oxaloacetate and the human rGOT1 alone and in combination with a non-effective dose of oxaloacetate in an animal model of ischemic stroke. Sixty rats were subjected to a transient middle cerebral artery occlusion (MCAO). Infarct volumes were assessed by magnetic resonance imaging (MRI) before treatment administration, and 24 h and 7 days after MCAO. Brain glutamate levels were determined by in vivo MR spectroscopy (MRS) during artery occlusion (80 min) and reperfusion (180 min). GOT activity and serum glutamate concentration were analyzed during the occlusion and reperfusion period. Somatosensory test was performed at baseline and 7 days after MCAO. The three treatments tested induced a reduction in serum and brain glutamate levels, resulting in a reduction in infarct volume and sensorimotor deficit. Protective effect of rGOT1 supplemented with oxaloacetate at 7 days persists even when treatment was delayed until at least 2 h after onset of ischemia. In conclusion, our findings indicate that the combination of human rGOT1 with low doses of oxaloacetate seems to be a successful approach for stroke treatment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号