首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitin/proteasome system (UPS) is responsible for the regulated processive degradation of proteins residing in the cytosol, nucleus, and endoplasmic reticulum. The two central players are ubiquitin, a small protein that is conjugated to substrates, and the proteasome, a large multi-subunit proteolytic complex that executes degradation of ubiquitylated proteins. Ubiquitylation and proteasomal degradation are highly dynamic processes. During the last decade, many researchers have started taking advantage of fluorescent proteins, which allow studying the dynamic nature of this system in the context of its natural environment: the living cell. In this review, we will summarize studies that have implemented this approach to examine the UPS and discuss novel insights in the dynamic organization of the UPS.  相似文献   

2.
The dynamic and specific modification of cellular proteins by members of the ubiquitin protein family is a vital regulatory mechanism that lies at the heart of almost all biological processes. Because of both their pervasive and complex nature, these regulatory pathways have been the target of many recent proteomic studies. Such works have provided numerous insights. Through the use of various mass spectrometry techniques, affinity purification methods, and/or chemical probes, large lists have begun to be compiled for the multitude of substrates, interacting partners, and enzymatic components of these regulatory circuits. Furthermore, similar tools have provided many insights into functional aspects such as their mechanisms of substrate specificity and enzymatic activity. This review provides a summary of these recent proteomic works, along with comments on future directions of the field.  相似文献   

3.
Synaptic plasticity -- the modulation of synaptic strength between a presynaptic terminal and a postsynaptic dendrite -- is thought to be a mechanism that underlies learning and memory. It has become increasingly clear that regulated protein synthesis is an important mechanism used to regulate the protein content of synapses that results in changes in synaptic strength. Recent experiments have highlighted a role for the opposing process, that is, regulated protein degradation via the ubiquitin-proteasome system, in synaptic plasticity. These recent findings raise exciting questions as to how proteasomal activity can regulate synapses over different temporal and spatial scales.  相似文献   

4.
We hypothesized that impaired proteasomal function affects gene expression in cardiomyocytes. To identify those genes, a proteomics-based analysis of neonatal rat cardiac myocytes treated with the proteasome inhibitor MG132 in comparison to vehicle treated control cells was performed. MG132 treatment induced reproducible changes in the protein expression profile, which was analyzed by two-dimensional difference gel electrophoresis followed by tryptic peptide mass fingerprinting for spot identification by MALDI-TOF mass spectrometry. The identified protein alterations could be grouped into three major categories: (1) induction of small heat shock proteins (HSPs) with chaperonic function, such as HSP27, alphaB-crystallin, and cardiovascular HSP, (2) altered expression of actin associated proteins, such as cofilin-1 and transgelin, and (3) induction of antioxidant proteins, such as peroxiredoxin-1, superoxide dismutase-1, and hemeoxygenase-1. Northern blotting revealed that expression was regulated at the mRNA level. Given that proteasomal activity is decreased in cardiovascular diseases, alterations in proteasome-dependent control of mRNA expression could provide a novel mechanism by which disease progression is modulated.  相似文献   

5.
6.
Apoptosis is an organised ATP‐dependent programmed cell death that organisms have evolved to maintain homoeostatic cell numbers and eliminate unnecessary or unhealthy cells from the system. Dysregulation of apoptosis can have serious manifestations culminating into various diseases, especially cancer. Accurate control of apoptosis requires regulation of a wide range of growth enhancing as well as anti‐oncogenic factors. Appropriate regulation of magnitude and temporal expression of key proteins is vital to maintain functional apoptotic signalling. Controlled protein turnover is thus critical to the unhindered operation of the apoptotic machinery, disruption of which can have severe consequences, foremost being oncogenic transformation of cells. The ubiquitin proteasome system (UPS) is one such major cellular pathway that maintains homoeostatic protein levels. Recent studies have found interesting links between these two fundamental cellular processes, wherein UPS depending on the cue can either inhibit or promote apoptosis. A diverse range of E3 ligases are involved in regulating the turnover of key proteins of the apoptotic pathway. This review summarises an overview of key E3 ubiquitin ligases involved in the regulation of the fundamental proteins involved in apoptosis, linking UPS to apoptosis and attempts to emphasize the significance of this relationship in context of cancer.  相似文献   

7.
8.
9.
《BBA》2020,1861(12):148302
From mitochondrial quality control pathways to the regulation of specific functions, the Ubiquitin Proteasome System (UPS) could be compared to a Swiss knife without which mitochondria could not maintain its integrity in the cell. Here, we review the mechanisms that the UPS employs to regulate mitochondrial function and efficiency. For this purpose, we depict how Ubiquitin and the Proteasome participate in diverse quality control pathways that safeguard entry into the mitochondrial compartment. A focus is then achieved on the UPS-mediated control of the yeast mitofusin Fzo1 which provides insights into the complex regulation of this particular protein in mitochondrial fusion. We ultimately dissect the mechanisms by which the UPS controls the degradation of mitochondria by autophagy in both mammalian and yeast systems. This organization should offer a useful overview of this abundant but fascinating literature on the crosstalks between mitochondria and the UPS.  相似文献   

10.
11.
A transgenic mouse model of the ubiquitin/proteasome system   总被引:13,自引:0,他引:13  
Impairment of the ubiquitin/proteasome system has been proposed to play a role in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although recent studies confirmed that some disease-related proteins block proteasomal degradation, and despite the existence of excellent animal models of both diseases, in vivo data about the system are lacking. We have developed a model for in vivo analysis of the ubiquitin/proteasome system by generating mouse strains transgenic for a green fluorescent protein (GFP) reporter carrying a constitutively active degradation signal. Administration of proteasome inhibitors to the transgenic animals resulted in a substantial accumulation of GFP in multiple tissues, confirming the in vivo functionality of the reporter. Moreover, accumulation of the reporter was induced in primary neurons by UBB+1, an aberrant ubiquitin found in Alzheimer disease. These transgenic animals provide a tool for monitoring the status of the ubiquitin/proteasome system in physiologic or pathologic conditions.  相似文献   

12.
13.
Cooperation of molecular chaperones with the ubiquitin/proteasome system   总被引:12,自引:0,他引:12  
Molecular chaperones and energy-dependent proteases have long been viewed as opposing forces that control protein biogenesis. Molecular chaperones are specialized in protein folding, whereas energy-dependent proteases such as the proteasome mediate efficient protein degradation. Recent data, however, suggest that molecular chaperones directly cooperate with the ubiquitin/proteasome system during protein quality control in eukaryotic cells. Modulating the intracellular balance of protein folding and protein degradation may open new strategies for the treatment of human diseases that involve chaperone pathways such as cancer and diverse amyloid diseases.  相似文献   

14.
15.
16.
Jinghui Zhao 《Autophagy》2016,12(10):1967-1970
Proteins in eukaryotic cells are continually being degraded to amino acids either by the ubiquitin proteasome system (UPS) or by the autophagic-lysosomal pathway. The breakdown of proteins by these 2 degradative pathways involves totally different enzymes that function in distinct subcellular compartments. While most studies of the UPS have focused on the selective ubiquitination and breakdown of specific cell proteins, macroautophagy/autophagy is a more global nonselective process. Consequently, the UPS and autophagy were traditionally assumed to serve distinct physiological functions and to be regulated in quite different manners. However, recent findings indicate that protein breakdown by these 2 systems is coordinately regulated by important physiological stimuli. The activation of MTORC1 by nutrients and hormones rapidly suppresses proteolysis by both proteasomes and autophagy, which helps promote protein accumulation, whereas in nutrient-poor conditions, MTORC1 inactivation causes the simultaneous activation of these 2 degradative pathways to supply the deprived cells with a source of amino acids. Also this selective breakdown of key anabolic proteins by the UPS upon MTORC1 inhibition can help limit growth-related processes (e.g., cholesterol biosynthesis). Thus, the collaboration of these 2 degradative systems, together with the simultaneous control of protein translation by MTORC1, provide clear advantages to the organism in both growth and starvation conditions.  相似文献   

17.
A proteomics method has been developed to purify and identify the specific proteins modified by ubiquitin (Ub) from human cells. In purified samples, Ub and 21 other proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectra using SEQUEST. These proteins included several of the expected carriers of Ub including Ub-conjugating enzymes and histone proteins. To perform these experiments, a cell line coexpressing epitope tagged His(6X)-Ub and green fluorescent protein (GFP) was generated by stably transfecting HEK293 cells. Ubiquitinated proteins were purified using nickel-affinity chromatography and digested in solution with trypsin. Complex mixtures of peptides were separated by reversed phase chromatography and analyzed by nano LC-MS/MS using the LCQ quadrupole ion-trap mass spectrometer. Proteins identified from His(6X)-Ub-GFP transfected cells were compared to a list of proteins from HEK293 cells, which associate with nickel-nitrilotriacetic acid (Ni-NTA)-agarose in the absence of His-tagged Ub. In a proof of principle experiment, His(6X)-Ub-GFP transfected cells were treated with As (III) (10 microM, 24 h) in an attempt to identify substrates increasingly modified by Ub. In this experiment, proliferating cell nuclear antigen, a DNA repair protein and known ubiquitin substrate, was confidently identified. This proteomics method, developed for the analysis of ubiquitinated proteins, is a step towards large-scale characterization of Ub-protein conjugates in numerous physiological and pathological states.  相似文献   

18.
Intracellular protein inclusions in Alzheimer's disease and progressive supranuclear palsy contain UBB+1, a variant ubiquitin. UBB+1 is able block the 26S proteasome in cell lines. Proteasome inhibition by drug action has previously been shown to induce a heat-shock response and render protection against stress. We investigated UBB+1 by developing a stable, conditional expression model in SH-SY5Y human neuroblastoma cells. Induction of UBB+1 expression caused proteasome inhibition as was confirmed by reduced ability to process misfolded canavanyl proteins, accumulation of GFPu, a proteasome substrate, and reduced cleavage of a fluorogenic substrate. We show that expression of UBB+1 induces expression of heat-shock proteins. This priming of the chaperone system in these cells promotes a subsequent resistance to tert-butyl hydroperoxide-mediated oxidative stress. We conclude that although UBB+1-expressing cells have a compromised ubiquitin-proteasome system, they are protected against oxidative stress conditions.  相似文献   

19.
Protein degradation is critical for proteostasis, and the addition of polyubiquitin chains to a substrate is necessary for its recognition by the 26S proteasome. Therapeutic intervention in the ubiquitin proteasome system has implications ranging from cancer to neurodegeneration. Novel screening methods and chemical biology tools for targeting E1-activating, E2-conjugating and deubiquitinating enzymes will be discussed in this review. Approaches for targeting E3 ligase-substrate interactions as well as the proteasome will also be covered, with a focus on recently described approaches.  相似文献   

20.

The metabolic syndrome (MetS) and pathologies associated with metabolic dysregulations a worldwide growing problem. Our previous study demonstrated that pioglitazone (PGZ) has beneficial effects on metabolic syndrome associated disturbances in the heart. However, mechanism mediating the molecular alterations of Ubiquitin proteasome system (UPS) and autophagy has not been investigated in rat pancreas with metabolic syndrome. For this reason, we first aimed to detect whether MetS effects on the expression of UPS (p97/VCP, SVIP, Ubiquitin) and autophagic (p62, LC3) proteins in rat pancreas. The second aim of the study was to find impact of pioglitazone on the expression of UPS and autophagic proteins in MetS rat pancreas. To answer these questions, metabolic syndrome induced rats were used as a model and treated with pioglitazone for 2 weeks. Pancreatic tissue injuries, fibrosis and lipid accumulation were evaluated histopathologically in control, MetS and MetS-PGZ groups. Apoptosis and cell proliferation of pancreatic islet cells were assessed in all groups. UPS and autophagic protein expressions of pancreas in all groups were detected by using immunohistochemistry, double-immunfluorescence and Western blotting. Compared with the controls, the rat fed with high sucrose exhibited signs of metabolic syndrome, such as higher body weight, insulin resistance, higher triglyceride level and hyperglycaemia. MetS rats showed pancreatic tissue degeneration, fibrosis and lipid accumulation when their pancreas were examined with Hematoxilen-eozin and Mallory trichrome staining. Metabolic, histopathologic parameters and cell proliferation showed greater improvement in MetS-PGZ rats and pioglitazone decreased apoptosis of islet cells. Moreover, SVIP, ubiquitin, LC3 and p62 expressions were significantly increased while only p97/VCP expression was significantly decreased in MetS-rat pancreas compared to control. PGZ treatment significantly decreased the MetS-induced increases in autophagy markers. Additionally, UPS and autophagy markers were found to colocalizated with insulin and glucagon. Colocalization ratio of UPS markers with insulin showed significant decrease in MetS rats and PGZ increased this ratio, whereas LC3-insulin colocalization displayed significant increase in MetS rats and PGZ reversed this effect. In conclusion, PGZ improved the pancreatic tissue degeneration by increasing the level of p97/VCP and decreasing autophagic proteins, SVIP and ubiquitin expressions in MetS-rats. Moreover, PGZ has an effect on the colocalization ratio of UPS and autophagy markers with insulin.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号