首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principal storage reserve of sugar beet seeds is starch, which is localised in the perisperm. Additional storage reserves include the seed proteins, albumins, globulins and glutclins, which are exclusively located in the embryo. Soluble sugars are also detectable in all the organs of the mature seed. The time-course of reserve mobilisation in the different organs of the sugar beet ( Beta vulgaris L. cv. Regina) seed during germination and early seedling growth is documented, with particular reference to changes in (a) activities of hydrolases: a-amylase, β-amylase, and α-glucosidases; (b) levels of carbohydrates and (c) proteins. Amylase activities increase substantially in both cotyledons, as well as the perisperm, whereas the increase in α-glucosidase activities is largely confined to the perisperm.  相似文献   

2.
3.
  • Ricinus communis is an important oilseed crop worldwide and is also considered one of the best potential plants for salt-affected soil improvement in northeast China. However, little is known about photosynthesis and carbohydrate metabolism in this plant, nor the distribution of carbohydrates in cotyledons and roots under salinity stress.
  • In the present study, seedling growth, gas exchange parameters (PN, E, gs and Ci), carbohydrate (fructose, sucrose, glucose, soluble sugar and starch) metabolism and related enzymes and genes were measured in Ricinus plants.
  • Under salt stress, PN of cotyledons decreased significantly (P < 0.05), resulting in weak photosynthetic capacity. Furthermore, salt stress increased sucrose and glucose content in cotyledons, but decreased soluble sugar and starch content. However, sucrose increased and starch decreased in roots. This may be correlated with the increasing sugar metabolism under salinity, including notable changes in sugar-related enzyme activities (SPS, SuSy, α-amylase and β-amylase) and gene expression of RcINV, RcSUS, RcAmY, RcBAM and RcGBE1.
  • The results suggest that salinity reduces photosynthesis of cotyledons, alters carbohydrate allocation between cotyledons and roots and also promotes starch utilization in cotyledons and starch biosynthesis in roots, leading to a functional imbalance between cotyledons and roots. Together, these findings provide insights into the crucial role of sugar metabolism in improving salt-tolerance of Ricinus during the early seedling growth stage.
  相似文献   

4.
We studied the effects of prolonged dark growth on proplastids and etioplasts in cotyledons of sugar beet (Beta vulgaris L.) seedlings. Differentiation of proplastids into etioplasts occurred between d 4 and d 6 after imbibition, with the typical characteristics of increased synthesis of plastidial proteins, protein and carotenoid accumulation, size increase, development of plastid membranes and of the prolamellar body, and increase of the greening capacity. However, this situation of efficient greening capacity was short-lived. The greening capacity started to decline from d 6 after imbibition. This decline was due in part to reserve depletion and glucose limitation and also to irreversible damage to plastids. Indeed, electron microscopy observations in situ showed some signs of plastidial damage, such as accumulation of plastoglobuli and membrane alterations. The biochemical characterization of purified plastids also showed a decrease of proteins per plastid. Aminopeptidase activities, and to a lesser extent, neutral endopeptidase activities, were found to increase in plastids during this degenerative process. We identified two plastidial aminopeptidases showing a sharp increase of activity at the onset of the degenerative process. One of them, an alanyl aminopeptidase, was shown to be inactivated by exposure to light or addition of exogenous glucose, thus confirming the relationship with prolonged dark growth and indicating a relationship with glucose limitation.  相似文献   

5.
Protein synthesis in dormant embryos of sugar maple ( Acer saccharum ) was investigated in seeds stratified at 4°C or incubated at 15°C. Seeds stratified at 4°C germinated after 27 days; seeds incubated at 15°C failed to germinate. Stratification increased the embryo's capacity for protein synthesis by day 11 as measured by in vivo incorporation of [35S]-methionine into purified protein. At 4°C protein synthesis in the embryonic axis rose in a linear fashion prior to germination, whereas in cotyledons it increased until day 20 and then declined. Analysis of radiolabelled proteins by two-dimensional gel electrophoresis revealed that the levels of specific proteins were altered by temperature, primarily in the cotyledons. Several proteins were expressed in the cotyledons at 15°C but were absent in unstratified embryos and in embryos stratified at 4°C. That is, the expression of these proteins was repressed during stratification and release from dormancy. Levels of other proteins in the cotyledons declined at 4°C during stratification. We suggest that one or more of these proteins may be associated with the inhibition of growth of the embryonic axis imposed by the cotyledons.  相似文献   

6.
The consumption of fructans as a low caloric food ingredient or dietary fibre is rapidly increasing due to health benefits. Presently, the most important fructan source is chicory, but these fructans have a simple linear structure and are prone to degradation. Additional sources of high-quality tailor-made fructans would provide novel opportunities for their use as food ingredients. Sugar beet is a highly productive crop that does not normally synthesize fructans. We have introduced specific onion fructosyltransferases into sugar beet. This resulted in an efficient conversion of sucrose into complex, onion-type fructans, without the loss of storage carbohydrate content.  相似文献   

7.
The aim of this work was to characterize the respiratory metabolism of the greening cotyledons of cucumber (Cucumis sativus L.) during early seedling growth and to investigate how this is integrated with changes in mitochondrial biogenesis and function. In light-grown cotyledons, lipid mobilization extended from germination to 6 days postimbibition, reaching a maximum at 3 to 4 days postimbibition. The rate of dark oxygen uptake reached a maximum at 2 days postimbibition in dark-grown and 3 days postimbibition in light-grown cotyledons. Development of photosynthetic capacity occurred from 4 to 7 days postimbibition. In dark-grown cotyledons, lipid mobilization extended beyond 7 days postimbibition, and there was no greening or acquisition of photosynthetic competence. Measurements of mitochondrial function indicated that the respiratory capacity of the tissue changed such that during lipid mobilization there was a much greater capacity for the operation of the nondecarboxylating portion of the citric acid cycle (succinate to oxaloacetate), whereas during the development of photosynthetic function the activity of the remainder of the cycle (oxaloacetate to succinate) was induced. Comparison of the maximum capacities for mitochondrial substrate oxidations in vitro with the rates of in vivo substrate oxidations, predicted from the rate of lipid breakdown, indicated that mitochondria in this tissue operate at or below state 4 rates, suggesting limitation by both availability of ADP and substrate.  相似文献   

8.
不同有机氮效率的甜菜基因型筛选及差异分析   总被引:3,自引:0,他引:3  
通过对不同基因型甜菜土壤有机氮利用及吸收效率的筛选和差异分析,为土壤有机氮高效基因型甜菜的栽培及品种选育提供理论依据。2014-2015年选取100份不同基因型的甜菜材料通过室内及田间试验在甜菜的不同发育阶段比较并分析土壤有机氮效率,筛选出对有机氮利用及吸收效率均显著差异的高效和低效基因型甜菜材料。结果表明,初步筛选得到的有机氮高效基因型甜菜材料KWS8138、HI0466和有机氮低效基因型甜菜材料BETA176、T230苗期全株及根部有机氮利用效率(Organic Nitrogen Use Efficiency,ONUE)差异显著;之后通过田间试验对有机氮吸收效率(Organic Nitrogen Assimilation Efficiency,ONAE)做了进一步筛选,发现KWS8138不但对ONUE有显著优势,还具有较高的有机氮素吸收能力,包括苗期之后对土壤有机氮素的运转量较高,合理的根冠比等。有机氮低效基因型甜菜材料BETA176的有机氮素吸收利用能力很弱、氮素转运能力过低等限制了植株对有机氮素的合理利用,不利于有机氮效率的提高。因此确定KWS8138为有机氮高效基因型材料,BETA176为有机氮低效基因型材料,均可作为进一步试验的材料。有机氮高效基因型甜菜较高的土壤有机氮转运量及合理的根冠比促进了其对有机氮素的吸收,是有机氮高效的基础。较高的干物质生产效率反应了甜菜对有机氮素的高效利用,是有机氮高效的关键。  相似文献   

9.
Alkaline phosphatase is induced in excess phosphate media by starvation either for pyrimidines or for guanine. Induction is observed both during starvation, after a lag period, and following a period of starvation. Induction is not caused by a lowering of the internal orthophosphate pool, but is linked to alterations in the levels of the nucleotide pools. Experiments with purine-requiring mutants suggest that phosphatase is induced in wild-type strains by an adenine nucleotide. Mutations in the phoR gene can produce differential responses to the different starvation regimes.  相似文献   

10.
The majority of known plant resistance genes encode proteins with conserved nucleotide-binding sites and leucine-rich repeats (NBS-LRR). Degenerate primers based on conserved NBS-LRR motifs were used to amplify analogues of resistance genes from the dicot sugar beet. Along with a cDNA library screen, the PCR screen identified 27 genomic and 12 expressed NBS-LRR RGAs (nlRGAs) sugar beet clones. The clones were classified into three subfamilies based on nucleotide sequence identity. Sequence analyses suggested that point mutations, such as nucleotide substitutions and insertion/deletions, are probably the primary source of diversity of sugar beet nlRGAs. A phylogenetic analysis revealed an ancestral relationship among sugar beet nlRGAs and resistance genes from various angiosperm species. One group appeared to share the same common ancestor as Prf, Rx, RPP8, and Mi, whereas the second group originated from the ancestral gene from which 12C1, Xa1, and Cre3 arose. The predicted protein products of the nlRGAs isolated in this study are all members of the non-TIR-type resistance gene subfamily and share strong sequence and structural similarities with non-TIR-type resistance proteins. No representatives of the TIR-type RGAs were detected either by PCR amplification using TIR type-specific primers or by in silico screening of more than 16,000 sugar beet ESTs. These findings suggest that TIR type of RGAs is absent from the sugar beet genome. The possible evolutionary loss of TIR type RGAs in the sugar beet is discussed. These authors (Yanyan Tian, Longjiang Fan) contributed equally to this work.  相似文献   

11.
Jill Rulfs  June R. Aprille 《BBA》1982,681(2):300-304
The adenine nucleotide content (ATP+ADP+AMP) of newborn rabbit liver mitochondria was 6.0±0.5 nmol/mg mitochondrial protein at birth, increased rapidly to 14.5±1.7 nmol/mg protein by 2 h postnatal, peaked at 6 h, then decreased gradually to 7.8±0.6 nmol/mg protein by 4 days postnatal. There was a strong positive correlation (r=0.82) between the total adenine nucleotide pool size and adenine nucleotide translocase activity in these mitochondria. In contrast, glutamate + malate-supported State 3 respiratory rates remained constant from birth through the first week of life. State 4 rates also remained constant, as did the respiratory control index and uncoupled respiratory rates. The following conclusions are suggested: (1) The maximum rate of translocase activity is limited by the intramitochondrial adenine nucleotide pool size. (2) In newborn rabbit liver mitochondria, the State 3 respiratory rate is not limited by either the adenine pool size or the maximum capacity for translocase-mediated adenine exchange. (3) In contrast to rat, rabbit liver mitochondria are fully functional at birth with regard to respiratory rates and oxidative phosphorylation. (4) The rapid postnatal accumulation of adenine nucleotides by liver mitochondria, now documented in two species, may be a general characteristic of normal metabolic adjustment in neonatal mammals.  相似文献   

12.
Under greenhouse conditions, a pot experiment was conducted to clarify the potential of using some legumes as intercropped plants for reducing the root-knot nematode Meloidogyne incognita infecting sugar beet (Beta vulgaris L.) cv. DS-9004 compared to non-legume plant, garlic and non-intercropped plants. The obtained results revealed that all legumes including chickpea, Egyptian clover, faba bean, fenugreek, lentil and lupin significantly (p ≤ 0.05) reduced nematode criteria on the roots of sugar beet at different degrees. Chickpea and Egyptian clover reduced the number of galls on the roots of sugar beet as the percentage of reductions were 54 and 50%, respectively, followed by lupin and fenugreek, while garlic achieved 72% reduction compared to non-intercropped plants. Lupin reduced the number of egg masses by 59% followed by Egyptian clover and fenugreek (32%), three months after the treatment. On the other hand, six months after the treatment, chickpea reduced the number of galls by 55.7% followed by lupin (53.4%) and Egyptian clover (52.3%) and the percentage of reduction of egg masses behaved the same trend. Also, the treatments improved plant growth criteria of sugar beet, weight of roots (tubers) and the percentage of total soluble solids (TSS).  相似文献   

13.
AIMS: To determine the fermentation profiles by human gut bacteria of arabino-oligosaccharides of varying degree of polymerization. MATERIALS AND METHODS: Sugar beet arabinan was hydrolyzed with a commercial pectinase and eight fractions, of varying molecular weight, were isolated by gel-filtration chromatography. Hydrolysis fractions, arabinose, arabinan and fructo-oligosaccharides were fermented anaerobically by gut bacteria. Total bacteria, bifidobacteria, bacteroides, lactobacilli and the Clostridium perfringens/histolyticum sub. grp. were enumerated using fluorescent in situ hybridization. RESULTS: Bifidobacteria were stimulated to different extents depending on molecular weight, i.e. maximum increase in bifidobacteria after 48 h was seen on the lower molecular weight fractions. Lactobacilli fluctuated depending on the initial inoculum levels. Bacteroides numbers varied according to fraction; arabinan, arabinose and higher oligosaccharides (degree of polymerization, dp > 8) resulted in significant increases at 24 h. Only carbohydrate mixtures with dp of 1-2 resulted in significant increases at 48 h (log 8.77 +/- 0.23). Clostridia decreased on all substrates. CONCLUSIONS: Arabino-oligosaccharides can be considered as potential prebiotics. Significance and Impact of the Study: Arabinan is widely available as it is a component of sugar beet pulp, a co-product from the sugar beet industry. Generation of prebiotic functionality from arabinan would represent significant added value to a renewable resource.  相似文献   

14.
Bruising of sugar beet roots and the consequential sugar loss do not receive the attention they deserve within the sugar beet industry. Recent harvester tests have indicated that current levels of bruising damage could be decreased with existing technology. There is, however, little understanding of biological factors affecting susceptibility to bruising of sugar beet roots. This paper examines the available information on causes of bruising, the significance of some tissue characteristics, the processes of sugar loss following bruising and agronomic, physiological and biochemical considerations relevant to bruising and the sugar loss that follows. Some research needs are identified in conclusion.  相似文献   

15.
Studies on the appearance of various electron transport functions were followed during greening of etiolated cucumber cotyledons. Appearance of dichlorodimethoxy-p-benzoquinone, dimethyl quinone, tetramethyl-p-phenylenediamine, dichlorophenol indophenol and ferricyanide Hill reactions were observed after 8h of greening. However, photoreduction of methyl viologen (MV) and nicotinamide adenine dinucleotide phosphate (NADP) was observed from 2h of greening. Variable fluorescence, which is a direct indication of water-splitting function, was observed from 2h of greening in cotyledons, thylakoid membranes and photosystem II (PSII) particles. The decrease in variable fluorescence in the presence of MV (due to rapid reoxidation of Q-) observed from early stages of greening confirmed the photoreduction of MV by PSII. The early development of water-splitting function was further confirmed by the abolition of variable fluorescence in thylakoid membranes and PSII particles by heat treatment and concomittant loss of light dependent oxygen uptake in the presence of MV in heat treated chloroplasts. However, the photoreduction of MV and NADP was insensitive to intersystem electron transport inhibitors, dichlorophenyl dimethylurea or dibromomethyl isopropyl-p-benzoquinone till 8h of greening. Though the oxidation of intersystem electron carrier cytochrome f was observed from early stages of greening, the reduction of cytochrome f was not observed till 8h of greening. All these observations confirm that during early stages of greening MV and NADP are photoreduced by PSII without the involvement of intersystem electron carriers or the collaboration of PSI. Since these observations are at variance with the currently prevalent concept (Z-Scheme) of the photosynthetic generation of reducing power, which requires definite collaboration of the two photosystems, an alternate electron flow pathway is proposed.  相似文献   

16.
17.
Nitric oxide (NO) and various reactive nitrogen species produced in cells in normal growth conditions, and their enhanced production under stress conditions are responsible for a variety of biochemical aberrations. The present findings demonstrate that sunflower seedling roots exhibit high sensitivity to salt stress in terms of nitrite accumulation. A significant reduction in S‐nitrosoglutathione reductase (GSNOR) activity is evident in response to salt stress. Restoration of GSNOR activity with dithioerythritol shows that the enzyme is reversibly inhibited under conditions of 120 mM NaCl. Salt stress‐mediated S‐nitrosylation of cytosolic proteins was analyzed in roots and cotyledons using biotin‐switch assay. LC‐MS/MS analysis revealed opposite patterns of S‐nitrosylation in seedling cotyledons and roots. Salt stress enhances S‐nitrosylation of proteins in cotyledons, whereas roots exhibit denitrosylation of proteins. Highest number of proteins having undergone S‐nitrosylation belonged to the category of carbohydrate metabolism followed by other metabolic proteins. Of the total 61 proteins observed to be regulated by S‐nitrosylation, 17 are unique to cotyledons, 4 are unique to roots whereas 40 are common to both. Eighteen S‐nitrosylated proteins are being reported for the first time in plant systems, including pectinesterase, phospholipase d ‐alpha and calmodulin. Further physiological analysis of glyceraldehyde‐3‐phosphate dehydrogenase and monodehydroascorbate reductase showed that salt stress leads to a reversible inhibition of both these enzymes in cotyledons. However, seedling roots exhibit enhanced enzyme activity under salinity stress. These observations implicate the role of S‐nitrosylation and denitrosylation in NO signaling thereby regulating various enzyme activities under salinity stress in sunflower seedlings.  相似文献   

18.
Genotypic Variation for Drought Tolerance in Beta vulgaris   总被引:1,自引:0,他引:1  
Insufficient soil moisture during summer months is now the majorcause of sugar beet yield losses in the UK. However, selectionfor increased drought tolerance has not been a breeding priorityuntil recently. Genetic variation for drought tolerance is anessential prerequisite for the development of more stress-tolerantvarieties, but commercial sugar beet varieties seem to havesimilar yield responses to drought. The objective of this studywas to assess the degree of genotypic variation for droughttolerance within a wide range of sugar beet germplasm and genebankaccessions within Beta. Thirty sugar beet genotypes were screenedunder field drought conditions, and putative drought tolerantand sensitive lines (in terms of yield reduction in polythene-coveredvs. irrigated plots) were identified. Significant genotype xwater treatment interactions were found for dry matter yieldand relative leaf expansion rate. Genotypic differences fordrought susceptibility index were also significant. Differentialsensitivity of seedling shoot growth to water deficit was examinedby comparing 350 genebank accessions in a simple growth chamberscreen. Methods of data management were devised to highlightlines for entry into subsequent field tests. The results ofthe field and seedling screens indicate that there is variationfor tolerance to water deficits within sugar beet and relatedtypes, and that there are lines that show greater drought tolerancethan selected commercial varieties. Divergent lines showingcontrasting behaviour should aid in the identification of keymorpho-physiological traits that confer drought tolerance.  相似文献   

19.
20.
Inter-organ control of greening in etiolated cucumber (Cucumis sativus L. cv. Aonagajibae) cotyledons was investigated. Four- or six-day-old excised or intact etiolated cucumber cotyledons were illuminated under aerobic conditions. Excised cotyledons without hypocotyl hooks produced chlorophyll without a prolonged lag phase and the rate of chlorophyll formation was not depressed if they were illuminated immediately after excision. If the excised cotyledons were incubated in the dark before illumination, chlorophyll accumulation at the end of 6 h of continuous illumination was remarkably lowered as the dark period lengthened, especially in 6-day-old cotyledons. The rapid loss of chlorophyll-forming capacity of excised cotyledons during dark preincubation suggests a stimulatory effect of hypocotyls on the greening in cotyledons. The treatment of excised cotyledons with bleeding sap in the dark for 18 h resulted in the promotion of chlorophyll formation during subsequent continuous illumination. Partial fractionation of bleeding sap with organic solvents and paper chromatography indicates that the active substances showed the same behavior as cytokinins. These facts add weight to the hypothesis that cytokinins from roots flow into cotyledons and stimulate greening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号