首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:3,自引:0,他引:3  
Intergroup transfer by males is nearly universal among social primates. Furthermore, among the most frequently studied monkeys-savanna baboons and Japanese and rhesus macaques—females typically remain in their natal groups, so troops are composed of related matrilines. These facts strongly support two major theories: (l) that kin selection is a powerful force in patterning sociality (if one is to live in a group, one should prefer a group of one’s relatives); and (2) that the ultimate explanation for intergroup transfer is the avoidance of inbreeding depression (though both sexes would prefer to live with kin, one sex has to disperse to avoid inbreeding and for a variety of reasons the losing sex is generally male). Substantial rates of transfer by females in social species with routine male transfer would cast doubt on both ideas. In fact, evidence reviewed here indicates that female transfer is not unusual and among folivorous primates (e.g., Alouatta,the Colobinae) it seems to be routine. In addition to casting doubt on the demographic significance of inbreeding avoidance and favoring mutualistic and/or game theory interpretations of behavior over nepotistic ones, this finding supports the hypothesis that predator detection is the primary selective pressure favoring sociality for many primates. Finally, while female bonding [sensuWrangham, R. W. (1980), Behaviour75:262–299] among primates appears to be less common than generally believed, the observed correlation between female transfer and morphological adaptations to folivory provides empirical support for Wrangham’s model for the evolution of female-bonded groups.  相似文献   

2.
    
Ross KG 《Molecular ecology》2001,10(2):265-284
Molecular genetic studies of group kin composition and local genetic structure in social organisms are becoming increasingly common. A conceptual and mathematical framework that links attributes of the breeding system to group composition and genetic structure is presented here, and recent empirical studies are reviewed in the context of this framework. Breeding system properties, including the number of breeders in a social group, their genetic relatedness, and skew in their parentage, determine group composition and the distribution of genetic variation within and between social units. This group genetic structure in turn influences the opportunities for conflict and cooperation to evolve within groups and for selection to occur among groups or clusters of groups. Thus, molecular studies of social groups provide the starting point for analyses of the selective forces involved in social evolution, as well as for analyses of other fundamental evolutionary problems related to sex allocation, reproductive skew, life history evolution, and the nature of selection in hierarchically structured populations. The framework presented here provides a standard system for interpreting and integrating genetic and natural history data from social organisms for application to a broad range of evolutionary questions.  相似文献   

3.
    
Few studies have critically investigated the genetic composition of wild fish schools. Yet, such investigations may have profound implications for the understanding of social organization and population differentiation in both fundamental and applied research. Using 20 microsatellite loci, we investigated the composition of 53 schools (total n = 211) of adult and subadult migratory brook charr (Salvelinus fontinalis) sampled from the known feeding areas of two populations inhabiting Mistassini Lake (Québec, Canada). We specifically tested whether (i) school members originated from the same population, (ii) individuals from the same population within schools were kin (half- or full-siblings), and (iii) kin schooling relationships differed between sexes. Randomization tests revealed a tendency for most schools to be population specific, although some schools were population mixtures. Significantly more kin were found within schools than expected at random for both populations (approximately 21-34% of the total number of school members). This result, combined with the observed size range of individuals, indicated that stable associations between kin may occur beyond juvenile stages for up to 4 years. Nevertheless, a high proportion of school members were non-kin (approximately 66-79%). No differences were detected between sexes in the propensity to school with kin. We discuss the hypothesis that the stable kin groups, rather than arising from kin selection, may instead be a by-product of familiarity based on individual selection for the maintenance of local adaptations related to migration (natal and feeding area philopatry). Our results are noteworthy because they suggest that there is some degree of permanence in the composition of wild fish schools. Additionally, they support the hypothesis that schools can be hierarchically structured (from population members down to family groups) and are thus nonrandom genetic entities.  相似文献   

4.
Female social relationships among primates are thought to be shaped by socio-ecological factors and phylogenetic constraints. We suggest that patterns of paternal relatedness among females influence measures of social tolerance that have been used to classify species into different social relationship categories. As kin support and kin preference have only been measured for matrilineal kin and related individuals exchange less aggression and have a higher conciliatory tendency, the observed low nepotism levels and high tolerance levels may be an artifact of hidden paternal relatedness among the nonkin category. Using comparative data on macaques, we investigate this hypothesis using male reproductive skew as a proxy for paternal relatedness. Within the limitations of the study we show that populations classified as being less nepotistic, and more tolerant exhibit higher levels of reproductive skew. This first result and the reasoning behind may motivate future students of social relationships to take paternal relatedness into consideration. Potential implications of this finding if repeated with larger samples include that variation in aspects of macaque social relationships may be explained without considering phylogeny or the strength of between-group contest competition for food.  相似文献   

5.
    
Group‐living animals often maintain a few very close affiliative relationships—social bonds—that can buffer them against many of the inevitable costs of gregariousness. Kinship plays a central role in the development of such social bonds. The bulk of research on kin biases in sociality has focused on philopatric females, who typically live in deeply kin‐structured systems, with matrilineal dominance rank inheritance and life‐long familiarity between kin. Closely related males, in contrast, are usually not close in rank or familiar, which offers the opportunity to test the importance of kinship per se in the formation of social bonds. So far, however, kin biases in male social bonding have only been tested in philopatric males, where familiarity remains a confounding factor. Here, we studied bonds between male Assamese macaques, a species in which males disperse from their natal groups and in which male bonds are known to affect fitness. Combining extensive behavioural data on 43 adult males over a 10‐year period with DNA microsatellite relatedness analyses, we find that postdispersal males form stronger relationships with the few close kin available in the group than with the average nonkin. However, males form the majority of their bonds with nonkin and may choose nonkin over available close kin to bond with. Our results show that kinship facilitates bond formation, but is not a prerequisite for it, which suggests that strong bonds are not restricted to kin in male mammals and that animals cooperate for both direct and indirect fitness benefits.  相似文献   

6.
  总被引:3,自引:0,他引:3  
In annual hymenopteran societies headed by a single outbred queen, paternity (determined by queen mating frequency and sperm use) is the sole variable affecting colony kin structure and is therefore a key predictor of colony reproductive characteristics. Here we investigate paternity and male production in five species of Dolichovespula wasps. Twenty workers from each of 10 colonies of each of five species, 1000 workers in total, were analysed at three DNA microsatellite loci to estimate paternity. To examine the relationship between kin structure and reproductive behaviour, worker ovary activation was assessed by dissection and the maternal origin of adult males was assessed by DNA microsatellites. Effective paternity was low in all species (D. media 1.08, D. maculata 1.0, D. sylvestris 1.15, D. norwegica 1.08 and D. saxonica 1.35), leading to the prediction of queen-worker conflict over male production. In support of this, workers with full-size eggs in their ovaries (four out of five species) and adult males that were workers' sons (all five species) were found in queenright colonies. However, workers were only responsible for a minority of male production (D. media 7.4%, D. maculata 20.9%, D. sylvestris 9.8%, D. norwegica 2.6% and D. saxonica 34.6%) suggesting that the queen maintains considerable reproductive power over the workers. Kin structure and reproductive conflict in Dolichovespula contrast with their sister group Vespula. Dolichovespula is characterized by low paternity, worker reproduction, and queen-worker conflict and Vespula by high paternity, effective worker policing and absence of worker reproduction. The trend revealed by this comparison is as predicted by kin selection theory suggesting that colony kin structure has been pivotal in the evolution of the yellowjacket wasps.  相似文献   

7.
The validity and value of inclusive fitness theory   总被引:1,自引:0,他引:1  
Social evolution is a central topic in evolutionary biology, with the evolution of eusociality (societies with altruistic, non-reproductive helpers) representing a long-standing evolutionary conundrum. Recent critiques have questioned the validity of the leading theory for explaining social evolution and eusociality, namely inclusive fitness (kin selection) theory. I review recent and past literature to argue that these critiques do not succeed. Inclusive fitness theory has added fundamental insights to natural selection theory. These are the realization that selection on a gene for social behaviour depends on its effects on co-bearers, the explanation of social behaviours as unalike as altruism and selfishness using the same underlying parameters, and the explanation of within-group conflict in terms of non-coinciding inclusive fitness optima. A proposed alternative theory for eusocial evolution assumes mistakenly that workers' interests are subordinate to the queen's, contains no new elements and fails to make novel predictions. The haplodiploidy hypothesis has yet to be rigorously tested and positive relatedness within diploid eusocial societies supports inclusive fitness theory. The theory has made unique, falsifiable predictions that have been confirmed, and its evidence base is extensive and robust. Hence, inclusive fitness theory deserves to keep its position as the leading theory for social evolution.  相似文献   

8.
    
Numerous theoretical studies have investigated how limited dispersal may provide an explanation for the evolution of cooperation, by leading to interactions between relatives. However, despite considerable theoretical attention, there has been a lack of empirical tests. In this article, we test how patterns of dispersal influence the evolution of cooperation, using iron-scavenging in the bacterium Pseudomonas aeruginosa as our cooperative trait. We found that relatively limited dispersal does not favor cooperation. The reason for this is that although limited dispersal increases the relatedness between interacting individuals, it also leads to increased local competition for resources between relatives. This result supports Taylor's prediction that in the simplest possible scenario, the effects of increased relatedness and local competition exactly cancel out. In contrast, we show that one way for cooperation to be favored is if individuals disperse in groups (budding dispersal), because this maintains high relatedness while reducing local competition between relatives (relatively global competition).  相似文献   

9.
Hamilton''s theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton''s perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton''s rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton''s rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton''s rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution.  相似文献   

10.
We found that genetic relatedness among Polybia occidentalisworkers was .26±0.057, a value high enough to make altruisticbehavior by workers relatively easy to explain. This comparativelyhigh level of relatedness can be attributed to close relatednessamong queens of .57±0.077 and to great variation amongcolonies in numbers of queens. The harmonic mean of queen numberis 3.1 queens per colony, which is much lower than the arithmeticmean of 10.6 queens per colony. These results are consistentwith a colony cycle called cyclical oligogyny, that is characterizedby a reduction in queen number from colony initiation to colonyreproduction. We did not find any evidence that one or a fewqueens monopolized egg laying or that there was any inbreeding,both of which have been hypothesized to increase relatednessamong workers. Another factor that can increase relatednessamong workers and the brood they rear is withincolony segregationon the basis of relatedness. We found that combmate pupae aresignificantly more closely related to each other (r = .41) thanthey are to pupae in other combs (r = .33), but we have notinvestigated whether workers take advantage of these relatednesspatterns. This distribution of relatedness among combs willoccur if queens do not lay eggs randomly throughout the nest,but concentrate their egg laying on one or a subset of the availablecombs.  相似文献   

11.
Intra-group relatedness does not necessarily imply kin selection, a leading explanation for social evolution. An overlooked mechanism for generating population genetic structure is variation in longevity and fecundity, referred to as individual quality, affecting kin structure and the potential for cooperation. Individual quality also affects choosiness in partner choice, a key process explaining cooperation through direct fitness benefits. Reproductive skew theory predicts that relatedness decreases with increasing group size, but this relationship could also arise because of quality-dependent demography and partner choice, without active kin association. We addressed whether brood-rearing eider (Somateria mollissima) females preferentially associated with kin using a 6-year data set with individuals genotyped at 19 microsatellite loci and tested whether relatedness decreased with increasing female group size. We also determined the relationship between local relatedness and indices of female age and body condition. We further examined whether the level of female intracoalition relatedness differed from background relatedness in any year. As predicted, median female intra-group relatedness decreased with increasing female group size. However, the proportion of related individuals increased with advancing female age, and older females prefer smaller brood-rearing coalitions, potentially producing a negative relationship between group size and relatedness. There were considerable annual fluctuations in the level of relatedness between coalition-forming females, and in 1year this level exceeded that expected by random association. Thus, both passive and active mechanisms govern kin associations in brood-rearing eiders. Eiders apparently can discriminate between kin, but the benefits of doing so may vary over time.  相似文献   

12.
Genetic relatedness is expected to play a crucial role in theevolution of altruistic behaviors such as worker behavior inthe social insects. If individuals sacrifice their own reproduction,then the genes for this sacrifice will be lost unless theseindividuals aid the reproduction of others who share the genes.This leads to the prediction that altruism should be most commonin species with high relatedness among potential beneficiaries.Here we report an attempt to test for such an association. Weestimated both the incidence of altruism and the relatednessto potential beneficiaries in foundresses of seven species ofpaper wasps. The predicted positive correlation was not found,and we conclude that factors other than relatedness are moreimportant in determining interspecific differences in the incidenceof altruism.  相似文献   

13.
Cooperative alliances among kin may not only lead to indirect fitness benefits for group-living species, but can also provide direct benefits through access to mates or higher social rank. However, the immigrant sex in most species loses any potential benefits of living with kin unless immigrants disperse together or recruit relatives into the group in subsequent years. To look for evidence of small subgroups of related immigrants within social groups (kin substructure), we used microsatellites to assess relatedness between immigrant females of the cooperatively breeding superb starling, Lamprotornis superbus. We determined how timing of immigration led to kin subgroup formation and if being part of one influenced female fitness. Although mean relatedness in groups was higher for males than females, 26% of immigrant females were part of a kin subgroup with a sister. These immigrant sibships formed through kin recruitment across years more often than through coalitions immigrating together in the same year. Furthermore, females were more likely to breed when part of a kin subgroup than when alone, suggesting that female siblings form alliances that may positively influence their fitness. Ultimately, kin substructure should be considered when determining the role of relatedness in the evolution of animal societies.  相似文献   

14.
Hamilton''s rule is a central theorem of inclusive fitness (kin selection) theory and predicts that social behaviour evolves under specific combinations of relatedness, benefit and cost. This review provides evidence for Hamilton''s rule by presenting novel syntheses of results from two kinds of study in diverse taxa, including cooperatively breeding birds and mammals and eusocial insects. These are, first, studies that empirically parametrize Hamilton''s rule in natural populations and, second, comparative phylogenetic analyses of the genetic, life-history and ecological correlates of sociality. Studies parametrizing Hamilton''s rule are not rare and demonstrate quantitatively that (i) altruism (net loss of direct fitness) occurs even when sociality is facultative, (ii) in most cases, altruism is under positive selection via indirect fitness benefits that exceed direct fitness costs and (iii) social behaviour commonly generates indirect benefits by enhancing the productivity or survivorship of kin. Comparative phylogenetic analyses show that cooperative breeding and eusociality are promoted by (i) high relatedness and monogamy and, potentially, by (ii) life-history factors facilitating family structure and high benefits of helping and (iii) ecological factors generating low costs of social behaviour. Overall, the focal studies strongly confirm the predictions of Hamilton''s rule regarding conditions for social evolution and their causes.  相似文献   

15.
As individual success often comes at the expense of others, interactions between the members of a species are frequently antagonistic, especially in the context of reproduction. In theory, this conflict may be reduced in magnitude when kin interact, as cooperative behaviour between relatives can result in increased inclusive fitness. Recent tests of the potential role of cooperative behaviour between brothers in Drosophila melanogaster have proved to be both exciting and controversial. We set out to replicate these experiments, which have profound implications for the study of kin selection and sexual conflict, and to expand upon them by also examining the potential role of kinship between males and females in reproductive interactions. While we did observe reduced fighting and courtship effort between competing brothers, contrary to previous studies we did not detect any fitness benefit to females as a result of the modification of male antagonistic behaviours. Furthermore, we did not observe any differential treatment of females by their brothers, as would be expected if the intensity of sexual conflict was mediated by kin selection. In the light of these results, we propose an alternative explanation for observed differences in male–male conflict and provide preliminary empirical support for this hypothesis.  相似文献   

16.
    
Inclusive fitness theory predicts that sex investment ratios in eusocial Hymenoptera are a function of the relatedness asymmetry (relative relatedness to females and males) of the individuals controlling sex allocation. In monogynous ants (with one queen per colony), assuming worker control, the theory therefore predicts female‐biased sex investment ratios, as found in natural populations. Recently, E.O. Wilson and M.A. Nowak criticized this explanation and presented an alternative hypothesis. The Wilson–Nowak sex ratio hypothesis proposes that, in monogynous ants, there is selection for a 1 : 1 numerical sex ratio to avoid males remaining unmated, which, given queens exceed males in size, results in a female‐biased sex investment ratio. The hypothesis also asserts that, contrary to inclusive fitness theory, queens not workers control sex allocation and queen–worker conflict over sex allocation is absent. Here, I argue that the Wilson–Nowak sex ratio hypothesis is flawed because it contradicts Fisher's sex ratio theory, which shows that selection on sex ratio does not maximize the number of mated offspring and that the sex ratio proposed by the hypothesis is not an equilibrium for the queen. In addition, the hypothesis is not supported by empirical evidence, as it fails to explain ‘split’ (bimodal) sex ratios or data showing queen and worker control and ongoing queen–worker conflict. By contrast, these phenomena match predictions of inclusive fitness theory. Hence, the Wilson–Nowak sex ratio hypothesis fails both as an alternative hypothesis for sex investment ratios in eusocial Hymenoptera and as a critique of inclusive fitness theory.  相似文献   

17.
When individuals in a population can acquire traits through learning, each individual may express a certain number of distinct cultural traits. These traits may have been either invented by the individual himself or acquired from others in the population. Here, we develop a game theoretic model for the accumulation of cultural traits through individual and social learning. We explore how the rates of innovation, decay, and transmission of cultural traits affect the evolutionary stable (ES) levels of individual and social learning and the number of cultural traits expressed by an individual when cultural dynamics are at a steady‐state. We explore the evolution of these phenotypes in both panmictic and structured population settings. Our results suggest that in panmictic populations, the ES level of learning and number of traits tend to be independent of the social transmission rate of cultural traits and is mainly affected by the innovation and decay rates. By contrast, in structured populations, where interactions occur between relatives, the ES level of learning and the number of traits per individual can be increased (relative to the panmictic case) and may then markedly depend on the transmission rate of cultural traits. This suggests that kin selection may be one additional solution to Rogers's paradox of nonadaptive culture.  相似文献   

18.
Many amphibian species are known to form leks during breeding season, yet it has seldom been tested which evolutionary forces are likely to act on lek formation in this taxon. We tested the kin selection hypothesis for lek formation by using eight variable microsatellite loci to compare the genetic relationship of 203 males in seven Rana arvalis leks. The results indicate that moor frog males do not lek with kin: their relatedness within leks was not higher than expected by chance. Furthermore, spatially distinct leks within same water bodies could not be distinguished from each other as separate units. These results are not expected if kin selection underlie lek formation. On the basis of these results and general knowledge of anuran breeding biology, we suggest that lek formation in explosively breeding amphibians might have evolved by female choice for breeding aggregations, combined with female choice of habitat. Future work should aim at predicting aggregations based on rules of phonotaxis over different spatial scales, and empirical work should document visitation rates not only for leks of a specific size, but also for different travel distances that visiting females may have had to cover.  相似文献   

19.
  总被引:1,自引:0,他引:1  
The evolution of the complex societies displayed by social insects depended partly on high relatedness among interacting group members. Therefore, behaviors that depress group relatedness, such as multiple mating by reproductive females (polyandry), are unexpected in social insects. Nevertheless, the queens of several social insect species mate multiply, suggesting that polyandry provides some benefits that counteract the costs. However, few studies have obtained evidence for links between rates of polyandry and fitness in naturally occurring social insect populations. We investigated if polyandry was beneficial in the social wasp Vespula maculifrons. We used genetic markers to estimate queen mate number in V. maculifrons colonies and assessed colony fitness by counting the number of cells that colonies produced. Our results indicated that queen mate number was directly, strongly, and significantly correlated with the number of queen cells produced by colonies. Because V. maculifrons queens are necessarily reared in queen cells, our results demonstrate that high levels of polyandry are associated with colonies capable of producing many new queens. These data are consistent with the explanation that polyandry is adaptive in V. maculifrons because it provides a fitness advantage to queens. Our research may provide a rare example of an association between polyandry and fitness in a natural social insect population and help explain why queens in this taxon mate multiply.  相似文献   

20.
  总被引:4,自引:0,他引:4  
Abstract.— We study the spatial adaptive dynamics of a continuous trait that measures individual investment in altruism. Our study is based on an ecological model of a spatially heterogeneous population from which we derive an appropriate measure of fitness. The analysis of this fitness measure uncovers three different selective processes controlling the evolution of altruism: the direct physiological cost, the indirect genetic benefits of cooperative interactions, and the indirect genetic costs of competition for space. In our model, habitat structure and a continuous life cycle makes the cost of competing for space with relatives negligible. Our study yields a classification of adaptive patterns of altruism according to the shape of the costs of altruism (with decelerating, linear, or accelerating dependence on the investment in altruism). The invasion of altruism occurs readily in species with accelerating costs, but large mutations are critical for altruism to evolve in selfish species with decelerating costs. Strict selfishness is maintained by natural selection only under very restricted conditions. In species with rapidly accelerating costs, adaptation leads to an evolutionarily stable rate of investment in altruism that decreases smoothly with the level of mobility. A rather different adaptive pattern emerges in species with slowly accelerating costs: high altruism evolves at low mobility, whereas a quasi-selfish state is promoted in more mobile species. The high adaptive level of altruism can be predicted solely from habitat connectedness and physiological parameters that characterize the pattern of cost. We also show that environmental changes that cause increased mobility in those highly altruistic species can beget selection-driven self-extinction, which may contribute to the rarity of social species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号