首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
不同酸溶剂与不同分子量壳聚糖包衣均促进油菜种子萌发和幼苗生长。其中壳聚糖无机酸溶剂包衣种子发芽率及幼苗生化等指标优于有机酸溶剂 ;小分子量壳聚糖包衣优于大、中分子量的。壳聚糖包衣处理有促进植物生长之功能  相似文献   

2.
不同分子量壳聚糖对土壤碳、氮及呼吸的影响   总被引:5,自引:0,他引:5  
张文清  吕伟娇  陈强  李辉信 《生态学报》2006,26(4):1208-1284
考察了不同分子量壳聚糖对土壤微生物量C、N、土壤呼吸及矿质N的影响.研究发现:不同分子量的壳聚糖施入土壤后,土壤的微生物量C、N、呼吸及矿质N均明显提高.微生物量C、N及土壤呼吸有相似的变化趋势: 随壳聚糖用量的增加而增大.低分子量壳聚糖施入土壤后,微生物量C、N及土壤呼吸均先快速增加,然后下降;中等及高分子量壳聚糖施入土壤后则是开始时变化较小,第14天开始快速增加,34d后下降.研究还发现,NO3^--N与NH4^+-N变化趋势不完全相同,NO3^--N开始时变化较小,第14天开始快速增加,34d后快速下降;低分子量壳聚糖处理时,NH4^+-N开始时快速增加,之后缓慢下降;中等分子量壳聚糖处理时,因加入量不同而不同;高分子量壳聚糖处理时则是从第24天开始变化显著.  相似文献   

3.
桑白皮中壳聚糖的分离与鉴定   总被引:2,自引:0,他引:2  
首次报道了一种从桑白皮中分离壳聚糖的简便方便。经碱醇液高温处理 5h,壳聚糖收率为 7.2 % ,游离氨基为 2 9.6% ,脱乙酰度为 2 5% ,1%浓度壳聚糖的 1%醋酸溶液粘度为 1.52 MPa·s,平均分子量为 1.3× 10 3。  相似文献   

4.
蛹皮壳聚糖的制备及其用作酶固定化载体的研究   总被引:7,自引:0,他引:7  
利用换碱洗脱法,可以从家蚕蛹皮中提取到较高分子量的白色壳聚糖,脱乙酰度达91%以上;经H_2O_2降解,可制备从4.31×10~4~1.32×10~6间不同分子量的壳聚糖;不同分子量的壳聚糖可以制成相应的适宜载体用于酶的固定化,所得固定化酶具有较高的活力和较好的操作稳定性。  相似文献   

5.
纤维素酶解制取高活性壳聚糖   总被引:1,自引:0,他引:1  
研究了不同条件纤维素酶降解壳聚糖的特性 ,结果表明 5 0U/ g底物 纤维素酶 5 0℃酶解 8h的壳聚糖的抑菌活性最好。壳聚糖的平均分子量从 780ku降为 2 10ku。对酶解的壳聚糖用葡聚糖G 10 0凝胶分离 ,有效抑菌的分子片断其分子量为 130ku。  相似文献   

6.
壳聚糖抑菌机制的初步研究   总被引:4,自引:0,他引:4  
壳聚糖在医学、食品、环保、日化用品等领域有着广泛而重要的应用.近年来,壳聚糖由于对不同的菌类都具有良好的抑菌效果而被研究者们密切关注.然而,有关壳聚糖抑菌机制的研究却并不多,其抑菌机制也没有被完全阐明.在本研究中,我们发现很多金属离子可以对壳聚糖的抑菌效果产生影响,高浓度金属离子(0.5%)可以使壳聚糖完全丧失抑菌活性.还发现金黄色葡萄球菌和白色念珠菌在壳聚糖的作用下会发生钾离子和ATP的渗漏,而且五万分子量的壳聚糖引起钾离子和ATP的渗漏大约比五千分子量壳聚糖多2到4倍.不同分子量的壳聚糖对金黄色葡萄球菌和白色念珠菌都具有较好的抑菌效果,但是引起钾离子和ATP的渗漏量却存在很大差异,这说明小分子量壳聚糖很可能存在与大分子量壳聚糖不同的抑菌机制.  相似文献   

7.
高活性壳聚糖的制备及特性   总被引:10,自引:0,他引:10  
壳聚糖经100kGy60Coγ-射线辐射处理后,在0.01g/L的浓度下,对金黄色葡萄球菌生长抑制作用增强100倍.辐照剂量增加或减少,壳聚糖的抑菌活性均随之大幅降低.经辐射处理后形成的壳聚糖片段分子量小于10万,对金黄色葡萄球菌无明显抑制作用.  相似文献   

8.
家蝇幼虫壳聚糖的抑菌活性及影响因子   总被引:2,自引:0,他引:2  
为研究昆虫壳聚糖的抑菌活性及影响因子, 由家蝇Musca domestica幼虫制备了10个不同分子量的壳聚糖,在不同条件下分别对6种细菌作抑菌实验, 并通过测定细菌细胞膜和细胞壁的透性初步探讨了壳聚糖的抑菌机理。结果表明,分子量在21~251 kD的壳聚糖有很强的抑菌活性,抑菌活性呈现随pH的降低而增加的趋势,pH 5.5时最低抑菌浓度在0.03%~0.06%之间,Ca2+和Mg2+能够显著降低壳聚糖的抑菌作用。通过对实验结果的方差分析表明,壳聚糖的不同分子量、pH值和金属离子等外界因素都是壳聚糖抑菌活性的极显著影响因素,而菌株本身也是极显著影响因素之一。壳聚糖能够增加细胞膜通透性,造成细胞内容物的外泄。  相似文献   

9.
壳聚糖具有抑菌性与成膜性。将壳聚糖辐照降解得到的一系列不同粘均分子量产物进行涂膜草莓保鲜,研究涂膜液中壳聚糖粘均分子量、浓度、pH值、有机酸、明胶含量对草莓保鲜效果的影响;并设计四因素三水平正交试验。实验结果表明:1%(w/v)7.0×10^4Da壳聚糖、1%(v/v)醋酸、pH5、添加明胶0.5%的涂膜配方具有最好的保鲜效果;在常温(20℃、湿度80%~90%)下可以延长贮藏期2d;低温(3℃-4℃、湿度80%-90%)下可以延长贮藏期3d。  相似文献   

10.
胍乙酸壳聚糖的合成及其对黄瓜的保鲜研究   总被引:1,自引:0,他引:1  
以自制的不同脱乙酰度的壳聚糖和1-氯胍乙酸为原料合成了胍乙酸壳聚糖,研究了胍乙酸壳聚糖对黄瓜的保鲜效果。结果表明,由脱乙酰度为96%的壳聚糖制得的胍乙酸壳聚糖平均分子量为5287。随着脱乙酰度的增加,黄瓜失重率的增加逐渐减缓,随着贮存时间延长总叶绿素含量先升高然后缓慢下降,而维生素C含量则一直缓慢下降;脱乙酰度为96%的壳聚糖制得的胍乙酸壳聚糖贮存35 d后,黄瓜的质量损失为0.7%;贮存20 d后,总叶绿素含量仍然可达1.34 mg/g;贮存时间20 d后,维生素C含量可达0.18 mg/g。  相似文献   

11.
Inhibition of enzymatic activity of lipase (EC 3.1.1.3) from the fungus Candida rugosa and wheat (Triticum aestivum L.) germ by low-molecular-weight chitosan with an average molecular weight of 5.7 kDa in reactions of p-nitrophenyl palmitate cleavage was studied. Preincubation of lipases with chitosan, prior to addition of the substrate to solution, showed that equilibrium during the lipase-inhibitor complex formation was reached within 30 min. The inhibition constants for C. rugosa lipase and wheat germ lipase were 1.4 and 0.9 mM, respectively. The contribution of electrostatic interactions to the complex formation between chitosan and lipases is insignificant.  相似文献   

12.
Inhibition of enzymatic activity of lipase (EC 3.1.1.3) from the fungus Candida rugosa and wheat (Triticum aestivum L.) germ by low-molecular-weight chitosan with an average molecular weight of 5.7 kDa in reactions of p-nitrophenyl palmitate cleavage was studied. Preincubation of lipases with chitosan, prior to addition of the substrate to solution, showed that equilibrium during the lipase-inhibitor complex formation was reached within 30 min. The inhibition constants for C. rugosa lipase and wheat germ lipase were 1.4 and 0.9 mM, respectively. The contribution of electrostatic interactions to the complex formation between chitosan and lipases is insignificant.  相似文献   

13.
Inhibition of enzymatic activity of lipase (EC 3.1.1.3) from the fungus Candida rugosa and wheat (Triticum aestivum L.) germ by low-molecular-weight chitosan with an average molecular weight of 5.7 kDa in reactions of p-nitrophenyl palmitate cleavage was studied. Preincubation of lipases with chitosan, prior to addition of the substrate to solution, showed that equilibrium during the lipase-inhibitor complex formation was reached within 30 min. The inhibition constants for C. rugosa lipase and wheat germ lipase were 1.4 and 0.9 mM, respectively. The contribution of electrostatic interactions to the complex formation between chitosan and lipases is insignificant.  相似文献   

14.
壳聚糖对植物病原细菌的抑制作用研究   总被引:6,自引:1,他引:6  
本文通过测定最小抑制浓度和相对抑制率,观察了分子量和脱乙酰度对壳聚糖抑制植物病原细菌(胡萝卜软腐欧文氏菌Erwinia cartovara Var carotovara、油菜黄单孢菌绒毛草致病菌Xanthamonas campestris Pv holcicola、丁香假单孢菌黍致病变种Pseudomonas spyings Pv panici)作用的影响。结果表明:在一定范围内,随分子量和脱乙酰度的增大,壳聚糖的抑菌效果相应降低,而且各种病原细菌对不同,壳聚糖的敏感性也有很大差异。  相似文献   

15.
Xing R  Liu S  Guo Z  Yu H  Wang P  Li C  Li Z  Li P 《Bioorganic & medicinal chemistry》2005,13(5):1573-1577
The antioxidant potency of different molecular weight (DMW) chitosan and sulfated chitosan derivatives was investigated employing various established in vitro systems, such as superoxide (O(2)(.-))/hydroxyl ((-.)OH) radicals scavenging, reducing power, iron ion chelating. As expected, we obtained several satisfying results, as follows: firstly, low molecular weight chitosan had stronger scavenging effect on O(2)(.-) and (-.)OH than high molecular weight chitosan. For example the O(2)(.-) scavenging activity of low molecular weight chitosan (9 kDa) and high molecular weight chitosan (760 kDa) were 85.86% and 35.50% at 1.6 mg/mL, respectively. Secondly, comparing with DMW chitosan, DMW sulfated chitosans had the stronger inhibition effect on O(2)(.-). At 0.05 mg/mL, the scavenging activity on O(2)(.-) reached 86.26% for low molecular weight chitosan sulfate (9 kDa), but that of low molecular weight chitosan (9 kDa) was 85.86% at 1.6 mg/mL. As concerning chitosan and sulfated chitosan of the same molecular weight, scavenging activities of sulfated chitosan on superoxide and hydroxyl radicals were more pronounced than that of chitosan. Thirdly, low molecular weight chitosan sulfate had more effective scavenging activity on O(2)(.-) and (-.)OH than that of high molecular weight chitosan sulfate. Fourthly, DMW chitosans and sulfated chitosans were efficient in the reducing power, especially LCTS. Their orders were found to be LCTS>CTS4>HCTS>CTS3>CTS2>CTS1>CTS. Fifthly, CTS4 showed more considerable ferrous ion-chelating potency than others. Finally, the scavenging rate and reducing power of DMW chitosan and sulfated derivatives increased with their increasing concentration. Moreover, change of DMW sulfated chitosans was the most pronounced within the experimental concentration. However, chelating effect of DMW chitosans were not concentration dependent except for CTS4 and CTS1.  相似文献   

16.
Synthesis of chitosan sulfates with low molecular weight (Mv 9000–35,000 Da) was carried out by sulfation of low molecular weight chitosan (Mv 10,000–50,000 Da). The oleum was used as sulfating agent and dimethylfornamide as medium. The chitosans were prepared by enzymatic and acidic hydrolysis of initial high molecular weight chitosan as well as by extrusion solid-state deacetylation of chitin. As was shown by FT-IR and NMR-methods and elemental analysis, the sulfation occurred at C-6 and C-3 positions and substitution degree is 1.10–1.63. The molecular weight sulfated chitosan was determined by viscometric method and the Mark–Houwink equation [η]=10−5 4.97 M0.77. Study of anticoagulant activity showed that chitosan sulfates with lowered molecular weight demonstrated a regular increase of anti-Xa activity like heparins.  相似文献   

17.
A method for the determination of the antimicrobial activity of chitosan with the use of organic salts for the production of pH in the range of 5.5–8.2 was studied. The double-dilution method demonstrated the effectiveness of the determination of the antimicrobial activity of chitosan samples with different molecular weights and solubilities. It was found that the antibacterial activity increased at low pH values with increasing molecular weight, but chitosans with a molecular weight of 5–6 kDa showed higher activity at neutral and slightly alkaline pH levels. Determination of the antimicrobial activity of various chitosan samples at different pH values allowed a more reliable assessment of the potential biological activity of chitosan.  相似文献   

18.
Four chitosans with different molecular weights and degrees of deacetylation degree and 28 chitosans derived from these initial chitosans by ultrasonic degradation have been characterized by gel permeation chromatography (GPC), FT-IR spectroscopy, X-ray diffraction and titrimetric analyses. Antimicrobial activities were investigated against E. coli and S. aureus using an inhibitory rate technique. The results showed that ultrasonic treatment decreased the molecular weight of chitosan, and that chitosan with higher molecular weight and higher DD was more easily degraded. The polydispersity decreased with ultrasonic treatment time, which was in linear relationship with the decrease of molecular weight. Ultrasonic degradation changed the DD of initial chitosan with a lower DD (<90%), but not the DD of the initials chitosan with a higher DD (>90%). The increased crystallinity of ultrasonically treated chitosan indicated that ultrasonic treatment changed the physical structure of chitosan, mainly due to the decrease of molecular weight. Ultrasonic treatment enhanced the antimicrobial activity of chitosan, mainly due to the decrease of molecular weight.  相似文献   

19.
The interactions of lipopolysaccharide (LPS) with the polycation chitosan and its derivatives — high molecular weight chitosans (300 kDa) with different degree of N-alkylation, its quaternized derivatives, N-monoacylated low molecular weight chitosans (5.5 kDa) — entrapped in anionic liposomes were studied. It was found that the addition of chitosans changes the surface potential and size of negatively charged liposomes, the magnitudes of which depend on the chitosan concentration. Acylated low molecular weight chitosan interacts with liposomes most effectively. The binding of alkylated high molecular weight chitosan with liposomes increases with the degree of its alkylation. The analysis of interaction of LPS with chitoliposomes has shown that LPS-binding activity decreased in the following order: liposomes coated with a hydrophobic chitosan derivatives > coated with chitosan > free liposomes. Liposomes with N-acylated low molecular weight chitosan bind LPS more effectively than liposomes coated with N-alkylated high molecular weight chitosans. The increase in positive charge on the molecules of N-alkylated high molecular weight chitosans at the cost of quaternization does not lead to useful increase in efficiency of binding chitosan with LPS. It was found that increase in LPS concentration leads to a change in surface ζ-potential of liposomes, an increase in average hydrodynamic diameter, and polydispersity of liposomes coated with N-acylated low molecular weight chitosan. The affinity of the interaction of LPS with a liposomal form of N-acylated chitosan increases in comparison with free liposomes. Computer simulation showed that the modification of the lipid bilayer of liposomes with N-acylated low molecular weight chitosan increases the binding of lipopolysaccharide without an O-specific polysaccharide with liposomes due to the formation of additional hydrogen and ionic bonds between the molecules of chitosan and LPS.  相似文献   

20.
The effect of the molecular weight of chitosan on its ability to suppress systemic infection of bean mild mosaic virus in bean (Phasoleus vulgaris L.) plants was studied. The enzymatic hydrolysate of low-molecular-weight chitosan was successively fractionated by ultrafiltration through membranes with decreasing pore size. In total, four chitosan fractions with a weight-average molecular weight varying from 1.2 to 40.4 kDa were obtained. It was shown that the treatments of bean plants with these fractions (chitosan concentration, 10 or 100 microg/ml) inhibited virus accumulation and systemic propagation. The degree of chitosan-induced antiviral resistance increased as the molecular weight of chitosan decreased. The monomers comprising the chitosan molecule-glucosamine and N-acetylglucosamine--exhibited no antiviral activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号