首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The gene encoding catechol-O-methyltransferase (COMT) is a strong candidate for schizophrenia susceptibility, owing to the role of COMT in dopamine metabolism, and the location of the gene within the deleted region in velocardiofacial syndrome, a disorder associated with high rates of schizophrenia. Recently, a highly significant association was reported between schizophrenia and a COMT haplotype in a large case-control sample (Shifman et al. 2002). In addition to a functional valine-->methionine (Val/Met) polymorphism, this haplotype included two noncoding single-nucleotide polymorphisms (SNPs) at either end of the COMT gene. Given the role of COMT in dopamine catabolism and that deletion of 22q11 (containing COMT) is associated with schizophrenia, we postulated that the susceptibility COMT haplotype is associated with low COMT expression. To test this hypothesis, we have applied quantitative measures of allele-specific expression using mRNA from human brain. We demonstrate that COMT is subject to allelic differences in expression in human brain and that the COMT haplotype implicated in schizophrenia (Shifman et al. 2002) is associated with lower expression of COMT mRNA. We also show that the 3' flanking region SNP that gave greatest evidence for association with schizophrenia in that study is transcribed in human brain and exhibits significant differences in allelic expression, with lower relative expression of the associated allele. Our results indicate that COMT variants other than the Val/Met change are of functional importance in human brain and that the haplotype implicated in schizophrenia susceptibility is likely to exert its effect, directly or indirectly, by down-regulating COMT expression.  相似文献   

2.
Catechol-O-methyltransferase (COMT) regulates dopamine degradation and is located in a genomic region that is deleted in a syndrome associated with psychosis, making it a promising candidate gene for schizophrenia. COMT also has been shown to influence prefrontal cortex processing efficiency. Prefrontal processing dysfunction is a common finding in schizophrenia, and a background of inefficient processing may modulate the effect of other candidate genes. Using the NIMH sibling study (SS), a non-independent case-control set, and an independent German (G) case-control set, we performed conditional/unconditional logistic regression to test for epistasis between SNPs in COMT (rs2097603, Val158Met (rs4680), rs165599) and polymorphisms in other schizophrenia susceptibility genes. Evidence for interaction was evaluated using a likelihood ratio test (LRT) between nested models. SNPs in RGS4, G72, GRM3, and DISC1 showed evidence for significant statistical epistasis with COMT. A striking result was found in RGS4: three of five SNPs showed a significant increase in risk [LRT P-values: 90387 = 0.05 (SS); SNP4 = 0.02 (SS), 0.02 (G); SNP18 = 0.04 (SS), 0.008 (G)] in interaction with COMT; main effects for RGS4 SNPs were null. Significant results for SNP4 and SNP18 were also found in the German study. We were able to detect statistical interaction between COMT and polymorphisms in candidate genes for schizophrenia, many of which had no significant main effect. In addition, we were able to replicate other studies, including allelic directionality. The use of epistatic models may improve replication of psychiatric candidate gene studies.  相似文献   

3.
Lee SG  Joo Y  Kim B  Chung S  Kim HL  Lee I  Choi B  Kim C  Song K 《Human genetics》2005,116(4):319-328
Catechol-O-methyltransferase (COMT) inactivates circulating catechol hormones, catechol neurotransmitters, and xenobiotic catecholamines by methylating their catechol moieties. The COMT gene has been suggested as a candidate gene for schizophrenia through linkage analyses and molecular studies of velo-cardio-facial syndrome. A coding polymorphism of the COMT gene at codon 108/158 (soluble/membrane-bound form) causing a valine to methionine substitution has been shown to influence enzyme activity, but its association with schizophrenia is inconclusive. We have screened 17 known polymorphisms of the COMT gene in 320 Korean schizophrenic patients and 379 controls to determine whether there is a positive association with a nonsynonymous single-nucleotide polymorphism (rs6267) at codon 22/72 (soluble/membrane-bound form) causing an alanine-to-serine (Ala/Ser) substitution. With the Ala/Ala genotype as a reference group, the combined genotype (Ala/Ser and Ser/Ser)-specific adjusted odds ratio was 1.82 (95% CI=1.19–2.76; P=0.005), suggesting the Ser allele as a risk allele for schizophrenia. However, the Val/Met polymorphism was not associated with an increased risk of schizophrenia in Koreans (OR=0.88, 95% CI=0.64–1.21; P=0.43). The Ala72Ser substitution was correlated with reduced COMT enzyme activity. Our results support previous reports that the COMT haplotype implicated in schizophrenia is associated with low COMT expression.  相似文献   

4.
Autonomic dysfunction is frequent in patients with fibromyalgia (FM). Heart rate variability analyses have demonstrated signs of ongoing sympathetic hyperactivity. Catecholamines are sympathetic neurotransmitters. Catechol-O-methyltransferase (COMT), an enzyme, is the major catecholamine-clearing pathway. There are several single-nucleotide polymorphisms (SNPs) in the COMT gene associated with the different catecholamine-clearing abilities of the COMT enzyme. These SNPs are in linkage disequilibrium and segregate as 'haplotypes'. Healthy females with a particular COMT gene haplotype (ACCG) producing a defective enzyme are more sensitive to painful stimuli. The objective of our study was to define whether women with FM, from two different countries (Mexico and Spain), have the COMT gene haplotypes that have been previously associated with greater sensitivity to pain. All the individuals in the study were female. Fifty-seven Mexican patients and 78 Spanish patients were compared with their respective healthy control groups. All participants filled out the Fibromyalgia Impact Questionnaire (FIQ). Six COMT SNPs (rs2097903, rs6269, rs4633, rs4818, rs4680, and rs165599) were genotyped from peripheral blood DNA. In Spanish patients, there was a significant association between three SNPs (rs6269, rs4818, and rs4680) and the presence of FM when compared with healthy controls. Moreover, in Spanish patients with the 'high pain sensitivity' haplotype (ACCG), the disease, as assessed by the FIQ, was more severe. By contrast, Mexican patients displayed only a weak association between rs6269 and rs165599, and some FIQ subscales. In our group of Spanish patients, there was an association between FM and the COMT haplotype previously associated with high pain sensitivity. This association was not observed in Mexican patients. Studies with a larger sample size are needed in order to verify or amend these preliminary results.  相似文献   

5.
Several linkage studies across multiple population groups provide convergent support for a susceptibility locus for schizophrenia--and, more recently, for bipolar disorder--on chromosome 6q13-q26. We genotyped 192 European-ancestry and African American (AA) pedigrees with schizophrenia from samples that previously showed linkage evidence to 6q13-q26, focusing on the MOXD1-STX7-TRARs gene cluster at 6q23.2, which contains a number of prime candidate genes for schizophrenia. Thirty-one screening single-nucleotide polymorphisms (SNPs) were selected, providing a minimum coverage of at least 1 SNP/20 kb. The association observed with rs4305745 (P=.0014) within the TRAR4 (trace amine receptor 4) gene remained significant after correction for multiple testing. Evidence for association was proportionally stronger in the smaller AA sample. We performed database searches and sequenced genomic DNA in a 30-proband subsample to obtain a high-density map of 23 SNPs spanning 21.6 kb of this gene. Single-SNP analyses and also haplotype analyses revealed that rs4305745 and/or two other polymorphisms in perfect linkage disequilibrium (LD) with rs4305745 appear to be the most likely variants underlying the association of the TRAR4 region with schizophrenia. Comparative genomic analyses further revealed that rs4305745 and/or the associated polymorphisms in complete LD with rs4305745 could potentially affect gene expression. Moreover, RT-PCR studies of various human tissues, including brain, confirm that TRAR4 is preferentially expressed in those brain regions that have been implicated in the pathophysiology of schizophrenia. These data provide strong preliminary evidence that TRAR4 is a candidate gene for schizophrenia; replication is currently being attempted in additional clinical samples.  相似文献   

6.
The gene coding for catecol-o-methyltransferase (COMT), participant in the metabolism of catecholamines, has long been implicated as a candidate gene for schizophrenia. We determined the relation of the COMT Val108/158Met polymorphism with schizophrenia or its symptomatology (negative, disorganized and psychotic dimension). We conducted a case–control study comprising 186 patients with schizophrenia and 247 controls. The diagnosis of schizophrenia was established using the DSM-IV criteria for this illness. The clinical symptomatology was assessed through the Scale for the Assessment of Negative Symptoms and the Scale for the Assessment of Positive Symptoms. No significant differences were found in the distribution of alleles (χ2 = 0.01, df = 1, p = 0.90) or genotypes (χ2 = 1.66, df = 2, p = 0.43) between schizophrenic patients and the control group. Multivariate analysis showed that the COMT Val108/158Met polymorphism has no influence in the clinical symptomatology of schizophrenia. Our results showed no association between COMT Val108/158Met and schizophrenia or evidence for an association between COMT and the clinical symptomatology of this illness. This suggests that the COMT gene may not contribute to the risk for schizophrenia among the Mexican population.  相似文献   

7.
Association studies are widely seen as the most promising approach for finding polymorphisms that influence genetically complex traits, such as common diseases and responses to their treatment. Considerable interest has therefore recently focused on the development of methods that efficiently screen genomic regions or whole genomes for gene variants associated with complex phenotypes. One key element in this search is the use of linkage disequilibrium to gain maximal information from typing a selected subset of highly informative single-nucleotide polymorphism (SNP) markers, now often called "tagging SNPs" (tSNPs). Probably the most common approach to linkage-disequilibrium gene mapping involves a three-step program: (1) characterization of the haplotype structure in candidate genes or genomic regions of interest, (2) identification of tSNPs sufficient to represent the most common haplotypes, and (3) typing of tSNPs in clinical material. Early definitions of tSNPs focused on the amount of haplotype diversity that they explained. To select tSNPs that would have maximal power in a genetic association study, however, we have developed optimization criteria based on the r2 measure of association and have compared these with other criteria based on the haplotype diversity. To evaluate the full program and to assess how well the selected tags are likely to perform, we have determined the haplotype structure and have assessed tSNPs in the SCN1A gene, an important candidate gene for sporadic epilepsy. We find that as few as four tSNPs are predicted to maintain a consistently high r2 value with all other common SNPs in the gene, indicating that the tags could be used in an association study with only a modest reduction in power relative to direct assays of all common SNPs. This implies that very large case-control studies can be screened for variation in hundreds of candidate genes with manageable experimental effort, once tSNPs are identified. However, our results also show that tSNPs identified in one population may not necessarily perform well in another, indicating that the preliminary study to identify tSNPs and the later case-control study should be performed in the same population. Our results also indicate that tSNPs will not easily identify discrepant SNPs, which lie on importantly discriminating but apparently short genealogical branches. This could significantly complicate tagging approaches for phenotypes influenced by variants that have experienced positive selection.  相似文献   

8.

Background

“Imaging genetics” studies have shown that brain function by neuroimaging is a sensitive intermediate phenotype that bridges the gap between genes and psychiatric conditions. Although the evidence of association between functional val108/158met polymorphism of the catechol-O-methyltransferase gene (COMT) and increasing risk for developing schizophrenia from genetic association studies remains to be elucidated, one of the most topical findings from imaging genetics studies is the association between COMT genotype and prefrontal function in schizophrenia. The next important step in the translational approach is to establish a useful neuroimaging tool in clinical settings that is sensitive to COMT variation, so that the clinician could use the index to predict clinical response such as improvement in cognitive dysfunction by medication. Here, we investigated spatiotemporal characteristics of the association between prefrontal hemodynamic activation and the COMT genotype using a noninvasive neuroimaging technique, near-infrared spectroscopy (NIRS).

Methodology/Principal Findings

Study participants included 45 patients with schizophrenia and 60 healthy controls matched for age and gender. Signals that are assumed to reflect regional cerebral blood volume were monitored over prefrontal regions from 52-channel NIRS and compared between two COMT genotype subgroups (Met carriers and Val/Val individuals) matched for age, gender, premorbid IQ, and task performance. The [oxy-Hb] increase in the Met carriers during the verbal fluency task was significantly greater than that in the Val/Val individuals in the frontopolar prefrontal cortex of patients with schizophrenia, although neither medication nor clinical symptoms differed significantly between the two subgroups. These differences were not found to be significant in healthy controls.

Conclusions/Significance

These data suggest that the prefrontal NIRS signals can noninvasively detect the impact of COMT variation in patients with schizophrenia. NIRS may be a promising candidate translational approach in psychiatric neuroimaging.  相似文献   

9.
Haploinsufficiency of 22q11 genes including catechol- O -methyltransferase (COMT) and proline dehydrogenase (PRODH) may result in structural and functional brain abnormalities and increased vulnerability to schizophrenia as observed in patients with microdeletions of 22q11. Thus, COMT and PRODH could be modifier genes for schizophrenia. We examined association of polymorphisms in COMT and PRODH with brain anatomy in young patients with schizophrenia and schizoaffective disorder. We acquired structural magnetic resonance imaging data from 51 male patients and genotyped two single nucleotide polymorphisms (SNPs) in the COMT gene and three in the PRODH gene. Statistical Parametric Mapping software and optimized voxel-based morphometry were used to determine regional gray matter (GM) and white matter (WM) density differences, and total GM and WM volume differences between genotype groups. Two nonsynonymous SNPs in the PRODH gene were associated with bilateral frontal WM density reductions and an SNP in the P2 promoter region of COMT (rs2097603) was associated with GM increase in the right superior temporal gyrus. Furthermore, we found evidence for COMT and PRODH epistasis: in patients with a COMT Val allele (rs4680) and with one or two mutated PRODH alleles, we observed increased WM density in the left inferior frontal lobe. Our results suggest that genetic variation in COMT and PRODH has significant effects on brain regions known to be affected in schizophrenia. Further research is needed to investigate the role of 22q11 genes on brain structure and function and their role in vulnerability for schizophrenia.  相似文献   

10.
11.
Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the central nervous system (CNS), and performs many biological functions such as neural survival, differentiation, and plasticity. Previous studies have suggested that variants in the BDNF gene increase the risk of schizophrenia. In this study, we genotyped one (GT)n dinucleotide repeat and three SNPs (rs6265, rs2030324, and rs2883187) in a Chinese sample (617 cases and 672 controls). In addition, we performed an updated meta-analysis based on 16 population-based case-control studies examining association between rs6265 and schizophrenia. In single-locus analysis, no significant association was found between BDNF polymorphisms and schizophrenia in our subjects. The meta-analysis based on Asian and Caucasian subjects did not give positive result that rs6265 is associated with schizophrenia. However, haplotype analysis found a common four-locus haplotype is protective against schizophrenia (Case 3.1% vs Control 7%, p=0.0011). Our data provides evidence that BDNF is a susceptibility gene for schizophrenia in Chinese subjects.  相似文献   

12.
Guan F  Zhang C  Wei S  Zhang H  Gong X  Feng J  Gao C  Su R  Yang H  Li S 《Human genetics》2012,131(7):1047-1056
The phosphodiesterase 4B (PDE4B) is a candidate susceptibility gene for schizophrenia (SCZ), interacting with DISC1, a known genetic risk factor for SCZ. To examine if variants within PDE4B gene are associated with SCZ in Northwestern Han Chinese, and if these effects vary in gender-specific subgroup, we analyzed 20 SNPs, selected from previous studies and preliminary HapMap data analyses with minor allele frequency (MAF) ≥ 20%, in a cohort of 428 cases and 572 controls from genetically independent Northwestern Han Chinese. Single SNP association, haplotype association and sex-specific association analysis were performed. We found that rs472952 is significantly associated with SCZ and rs7537440 is associated with SCZ in females. Further analysis indicated that a haplotype block spanning PDE4B2 splice site is highly associated with SCZ and several haplotypes in this block have about twofold to threefold increase in cases. Our results provide further evidence that PDE4B may play important roles in the etiology of SCZ.  相似文献   

13.
Dopaminergic system in the prefrontal cortex (PFC) is known to regulate the cognitive functions. Catechol-O-methyl transferase (COMT), one of the major modulators of prefrontal dopamine function, has emerged as an important determinant of schizophrenia associated cognitive dysfunction and response to antipsychotics. A common Val->Met polymorphism (rs4680) in the COMT gene, associated with increased prefrontal dopamine catabolism, impairs prefrontal cognition and might increase risk for schizophrenia. Further, the degree of cognitive improvement observed with antipsychotics in schizophrenia patients is influenced by the COMT activity, and Val/Met has been proposed as a potential pharmacogenetic marker. However, studies evaluating the role of COMT have been equivocal. The presence of other functional polymorphisms in the gene, and the observed ethnic variations in the linkage disequilibrium structure at COMT locus, suggest that COMT activity regulation might be complex. Despite these lacunae in our current understanding, the influence of COMT on PFC mediated cognitive tasks is undeniable. COMT thus represents an attractive candidate for novel therapeutic interventions for cognitive dysfunction. The COMT activity inhibiting drugs including tolcapone and entacapone, have shown promising potential as they selectively modulate dopaminergic transmission. This review is an attempt to summarize the rapidly evolving literature exploring the diverse facets of COMT biology, its functional relevance as a predictive marker and a therapeutic target for schizophrenia.  相似文献   

14.
Changes in immunological system are one of dysfunctions reported in schizophrenia. Some changes based on an imbalance between Th1 and Th2 cytokines results from cytokine gene polymorphisms. Interleukin-4 gene (IL4) is considered as a potential candidate gene in schizophrenia association studies. The aim of the current case-control study was to examine whether the -590C/T (rs2243250) and -33C/T (rs2070874) IL4 gene polymorphisms are implicated in paranoid schizophrenia development in the Polish population. Genotyping of polymorphisms was performed by using PCR-RFLP technique. The genotypes and alleles distribution of both SNPs were analysed in patients (n = 182) and healthy individuals constituted the control group (n = 215). The connection between some clinical variables and studied polymorphisms has been examined as well. We did not revealed any association between the -590C/T and -33C/T polymorphisms and paranoid schizophrenia. In case of both SNPs the homozygous TT genotype was extremely rare. Both polymorphic sites of the IL4 gene were found to be in a very strong linkage disequilibrium. However we did not identify a haplotype predispose to paranoid schizophrenia. No associations were also observed between the clinical course and psychopathology of the disease and the genotypes of both analysed polymorphisms. Our results suggest that the polymorphisms -590C/T in IL4 gene promoter region and -33C/T in the 5'-UTR are not involved in the pathophysiology of paranoid schizophrenia in Polish residents.  相似文献   

15.
Linkage and association studies have recently implicated dystrobrevin-binding protein 1 (DTNBP1) in the etiology of schizophrenia. We analyzed seven previously tested DTNBP1 single-nucleotide polymorphisms (SNPs) in a cohort of 524 individuals with schizophrenia or schizoaffective disorder and 573 control subjects. The minor alleles of three SNPs (P1578, P1763, and P1765) were positively associated with the diagnosis of schizophrenia or schizoaffective disorder in the white subset of the study cohort (258 cases, 467 controls), with P1578 showing the most significant association (odds ratio 1.76, P =.0026). The same three SNPs were also associated in a smaller Hispanic subset (51 cases, 32 controls). No association was observed in the African American subset (215 cases, 74 controls). A stratified analysis of the white and Hispanic subsets showed association with the minor alleles of four SNPs (P1578, P1763, P1320, and P1765). Again, the most significant association was observed for P1578 (P =.0006). Haplotype analysis supported these findings, with a single risk haplotype significantly overrepresented in the white sample (P =.005). Our study provides further evidence for a role of the DTNBP1 gene in the genetic etiology of schizophrenia.  相似文献   

16.
A GWAS was performed for inborn X-linked facial dysmorphia with severe growth retardation in Labrador Retrievers. This lethal condition was mapped on the X chromosome at 17–21 Mb and supported by eight SNPs in complete LD. Dams of affected male puppies were heterozygous for the significantly associated SNPs and male affected puppies carried the associated alleles hemizygously. In the near vicinity to the associated region, RPS6KA3 was identified as a candidate gene causing facial dysmorphia in humans and mice known as Coffin–Lowry syndrome. Haplotype analysis showed significant association with the phenotypes of all 18 animals under study. This haplotype was validated through normal male progeny from a dam with the not-associated haplotype on both X chromosomes but male affected full-sibs with the associated haplotype.  相似文献   

17.
Ma X  Deng W  Liu X  Li M  Chen Z  He Z  Wang Y  Wang Q  Hu X  Collier DA  Li T 《Genes, Brain & Behavior》2011,10(7):734-739
Few genome-wide association studies (GWAS) of schizophrenia have included Chinese populations, and verification of positive genetic findings from other ethnic groups is rare in Chinese groups. We used fluid intelligence as the quantitative trait reflecting schizophrenia dysfunction in Chinese populations, and determined the impact of genetic variation on fluid intelligence phenotypic patterns to identify genetic influences in schizophrenia. The study sample comprised 98 patients with schizophrenia and 60 healthy controls. The general fluid intelligence of participants was assessed with Cattell's Culture-Free Intelligence Test (CCFIT). Subjects were genotyped using the Illumina HumanHap 660 beadchip. We identified the methionine sulfoxide reductase A (MSRA) gene on chromosome 8 as having an association with fluid intelligence. However, only CCFIT subtest 1 (series score) demonstrated a significant result for the interaction term using the criteria of the quantitative trait (QT) analysis of 10(-5) for at least three SNPs. There were 15 haplotype blocks of MSRA gene SNPs identified using Haploview 4.2 with solid spine D' > 0.80. The strongest QT interaction was noted in Block 3, with the most common haplotypes being AAACAGCAG and CGCAGAAGA. In conclusion, we report data from a GWAS with quantitative traits design from Chinese first-episode schizophrenia patients and matched controls. Although the gene identified requires confirmation in an independent sample, the MSRA gene located on chromosome 8 was found to be associated with the phenotype of schizophrenia.  相似文献   

18.
陈曦  张慧  王宇祥  王守志  程博涵  李辉 《遗传》2012,(10):102-109
为探讨鸡视网膜母细胞瘤基因1(Retinoblastoma1,RB1)多态性对体重性状的影响,文章以东北农业大学高、低脂双向选择品系肉鸡为实验材料,采用MALDI-TOF-MS、PCR-RFLP方法进行基因多态性检测和个体基因型分析,共获得27个SNP位点的基因型数据。采用滑动窗口法构建单倍型,进而利用单位点和单倍型分别与鸡体重性状进行关联分析。结合单位点和单倍型分析结果,确定了RB1基因上4个显著影响1周龄体重的SNP位点,2个显著影响1、3周龄体重的SNP位点。研究结果表明RB1基因是影响鸡早期体重性状的重要候选基因。  相似文献   

19.
Bayesian logistic regression using a perfect phylogeny   总被引:1,自引:0,他引:1  
Haplotype data capture the genetic variation among individuals in a population and among populations. An understanding of this variation and the ancestral history of haplotypes is important in genetic association studies of complex disease. We introduce a method for detecting associations between disease and haplotypes in a candidate gene region or candidate block with little or no recombination. A perfect phylogeny demonstrates the evolutionary relationship between single-nucleotide polymorphisms (SNPs) in the haplotype blocks. Our approach extends the logic regression technique of Ruczinski and others (2003) to a Bayesian framework, and constrains the model space to that of a perfect phylogeny. Environmental factors, as well as their interactions with SNPs, may be incorporated into the regression framework. We demonstrate our method on simulated data from a coalescent model, as well as data from a candidate gene study of sarcoidosis.  相似文献   

20.
Substance dependence is a frequently observed comorbid disorder in schizophrenia, but little is known about genetic factors possibly shared between the two psychotic disorders. GABRB2, a schizophrenia candidate gene coding for GABAA receptor β2 subunit, is examined for possible association with heroin dependence in Han Chinese population. Four single nucleotide polymorphisms (SNPs) in GABRB2, namely rs6556547 (S1), rs1816071 (S3), rs18016072 (S5), and rs187269 (S29), previously associated with schizophrenia, were examined for their association with heroin dependence. Two additional SNPs, rs10051667 (S31) and rs967771 (S32), previously associated with alcohol dependence and bipolar disorder respectively, were also analyzed. The six SNPs were genotyped by direct sequencing of PCR amplicons of target regions for 564 heroin dependent individuals and 498 controls of Han Chinese origin. Interestingly, it was found that recombination between the haplotypes of all-derived-allele (H1; OR = 1.00) and all-ancestral-allele (H2; OR = 0.74) at S5-S29 junction generated two recombinants H3 (OR = 8.51) and H4 (OR = 5.58), both conferring high susceptibility to heroin dependence. Additional recombination between H2 and H3 haplotypes at S1-S3 junction resulted in a risk-conferring haplotype H5 (OR = 1.94x109). In contrast, recombination between H1 and H2 haplotypes at S3-S5 junction rescued the risk-conferring effect of recombination at S5-S29 junction, giving rise to the protective haplotype H6 (OR = 0.68). Risk-conferring effects of S1-S3 and S5-S29 crossovers and protective effects of S3-S5 crossover were seen in both pure heroin dependent and multiple substance dependence subgroups. In conclusion, significant association was found with haplotypes of the S1-S29 segment in GABRB2 for heroin dependence in Han Chinese population. Local recombination was an important determining factor for switching haplotypes between risk-conferring and protective statuses. The present study provide evidence for the schizophrenia candidate gene GABRB2 to play a role in heroin dependence, but replication of these findings is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号