共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Guoliang Han Mingjie Wang Fang Yuan Na Sui Jie Song Baoshan Wang 《Plant molecular biology》2014,86(3):237-253
The CCCH type zinc finger proteins are a super family involved in many aspects of plant growth and development. In this study, we investigated the response of one CCCH type zinc finger protein AtZFP1 (At2g25900) to salt stress in Arabidopsis. The expression of AtZFP1 was upregulated by salt stress. Compared to transgenic strains, the germination rate, emerging rate of cotyledons and root length of wild plants were significantly lower under NaCl treatments, while the inhibitory effect was significantly severe in T-DNA insertion mutant strains. At germination stage, it was mainly osmotic stress when treated with NaCl. Relative to wild plants, overexpression strains maintained a higher K+, K+/Na+, chlorophyll and proline content, and lower Na+ and MDA content. Quantitative real-time PCR analysis revealed that the expression of stress related marker genes KIN1, RD29B and RD22 increased more significantly in transgenic strains by salt stress. Overexpression of AtZFP1 also enhanced oxidative and osmotic stress tolerance which was determined by measuring the expression of a set of antioxidant genes, osmotic stress genes and ion transport protein genes such as SOS1, AtP5CS1 and AtGSTU5. Overall, our results suggest that overexpression of AtZFP1 enhanced salt tolerance by maintaining ionic balance and limiting oxidative and osmotic stress. 相似文献
3.
4.
The yeast putative transcriptional repressor RGM1 is a proline-rich zinc finger protein 总被引:5,自引:0,他引:5 下载免费PDF全文
F Estruch 《Nucleic acids research》1991,19(18):4873-4877
I have cloned a yeast gene, RGM1, which encodes a proline-rich zinc, finger protein. rgm1 mutants do not show any obvious phenotype but overexpression of RGM1 gene greatly impairs cell growth. The proline-rich region of RGM1 attached to a heterologous DNA binding domain is able to repress the expression of the target gene. RGM1 shares similar zinc finger motifs with the mammalian Egr (early growth response) proteins as well as proline-rich sequences with a high serine and threonine content, suggesting that RGM1 and Egr proteins could have functional similarities. 相似文献
5.
6.
Cleavage of RNA hairpins mediated by a developmentally regulated CCCH zinc finger protein. 总被引:7,自引:1,他引:7 下载免费PDF全文
Control of RNA turnover is a major, but poorly understood, aspect of gene regulation. In multicellular organisms, progress toward dissecting RNA turnover pathways has been made by defining some cis-acting sequences that function as either regulatory or cleavage targets (J. G. Belasco and G. Brawerman, Control of Messenger RNA Stability, 1993). However, the identification of genes encoding proteins that regulate or cleave target RNAs has been elusive (C. A. Beelman and R. Parker, Cell 81:79-183, 1995); this gap in knowledge has made it difficult to identify additional components of RNA turnover pathways. We have utilized a modified expression cloning strategy to identify a developmentally regulated gene from Drosophila melanogaster that encodes a RNase that we refer to as Clipper (CLP). Significant sequence matches to open reading frames encoding unknown functions identified from the Caenorhabditis elegans and Saccharomyces cerevisiae genome sequencing projects suggest that all three proteins are members of a new protein family conserved from lower eukaryotes to invertebrates. We demonstrate that a member of this new protein family specifically cleaves RNA hairpins and that this activity resides in a region containing five copies of a previously uncharacterized CCCH zinc finger motif. CLP's endoribonucleolytic activity is distinct from that associated with RNase A (P. Blackburn and S. Moore, p. 317-433, in P. D. Boyer, ed., The Enzymes, vol. XV, part B, 1982) and is unrelated to RNase III processing of rRNAs and tRNAs (J. G. Belasco and G. Brawerman, Control of Messenger RNA Stability, 1993, and S. A. Elela, H. Igel, and M. Ares, Cell 85:115-124, 1995). Our results suggest that CLP may function directly in RNA metabolism. 相似文献
7.
Akio Tazuke Tsuguki Kinoshita Munehiko Asayama 《Physiology and Molecular Biology of Plants》2017,23(3):565-570
The cucumber (Cucumis sativus L.) gene Cucumis sativus Somatic Embryogenesis Zinc Finger 1 (CsSEF1) was suggested to be a good marker gene for sugar starvation in fruit. The expression of this gene in fruits is dramatically upregulated in plants that have suffered either complete defoliation or prolonged darkness. CsSEF1 was initially discovered as a gene that was upregulated during somatic embryogenesis. We examined the difference in fruit parts and the effect of pollination on the upregulation of CsSEF1 induced by defoliation treatment. The results indicated that the upregulation of CsSEF1 in fruit by defoliation is not dependent on the presence of developing embryos. The expression of CsSEF1 was upregulated in malformed fruit induced by salinity in which the development of placenta was arrested. Partial cutting of the distal part of the fruit showed that if placenta tissue remained there was no upregulation of CsSEF1, whereas when placenta tissue did not remain there was a marked upregulation of CsSEF1. These results could be consistently interpreted as showing that placenta tissue induced the transport of photoassimilates to the fruit and that without developing placenta tissue, pericarp tissue suffers from severe sugar starvation. This interpretation, in turn, enforces the view that CsSEF1 is a good marker gene of fruit sugar starvation. 相似文献
8.
Chorioallantoic fusion defects and embryonic lethality resulting from disruption of Zfp36L1, a gene encoding a CCCH tandem zinc finger protein of the Tristetraprolin family 下载免费PDF全文
Stumpo DJ Byrd NA Phillips RS Ghosh S Maronpot RR Castranio T Meyers EN Mishina Y Blackshear PJ 《Molecular and cellular biology》2004,24(14):6445-6455
The mouse gene Zfp36L1 encodes zinc finger protein 36-like 1 (Zfp36L1), a member of the tristetraprolin (TTP) family of tandem CCCH finger proteins. TTP can bind to AU-rich elements within the 3'-untranslated regions of the mRNAs encoding tumor necrosis factor (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF), leading to accelerated mRNA degradation. TTP knockout mice exhibit an inflammatory phenotype that is largely due to increased TNF secretion. Zfp36L1 has activities similar to those of TTP in cellular RNA destabilization assays and in cell-free RNA binding and deadenylation assays, suggesting that it may play roles similar to those of TTP in mammalian physiology. To address this question we disrupted Zfp36L1 in mice. All knockout embryos died in utero, most by approximately embryonic day 11 (E11). Failure of chorioallantoic fusion occurred in about two-thirds of cases. Even when fusion occurred, by E10.5 the affected placentas exhibited decreased cell division and relative atrophy of the trophoblast layers. Although knockout embryos exhibited neural tube abnormalities and increased apoptosis within the neural tube and also generalized runting, these and other findings may have been due to deficient placental function. Embryonic expression of Zfp36L1 at E8.0 was greatest in the allantois, consistent with a potential role in chorioallantoic fusion. Fibroblasts derived from knockout embryos had apparently normal levels of fully polyadenylated compared to deadenylated GM-CSF mRNA and normal rates of turnover of this mRNA species, both sensitive markers of TTP deficiency in cells. We postulate that lack of Zfp36L1 expression during mid-gestation results in the abnormal stabilization of one or more mRNAs whose encoded proteins lead directly or indirectly to abnormal placentation and fetal death. 相似文献
9.
Mörking PA Dallagiovanna BM Foti L Garat B Picchi GF Umaki AC Probst CM Krieger MA Goldenberg S Fragoso SP 《Biochemical and biophysical research communications》2004,319(1):169-177
We have identified two zinc finger proteins of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease in humans. These proteins, named tcZFP1 and tcZFP2, share the unusual zinc finger motif (CCCH) found in a diverse range of RNA-binding proteins involved in various aspects of the control of cell homeostasis and differentiation. We report here the functional expression of a recombinant tcZFP1, and the relative affinity and stability of the specific complexes formed between the protein and synthetic oligoribonucleotides containing C-rich sequences. 相似文献
10.
CaC3H14 encoding a tandem CCCH zinc finger protein is directly targeted by CaWRKY40 and positively regulates the response of pepper to inoculation by Ralstonia solanacearum 总被引:1,自引:0,他引:1 下载免费PDF全文
Ailian Qiu Yufen Lei Sheng Yang Ji Wu Jiazhi Li Bingjin Bao Yiting Cai Song Wang Jinhui Lin Yuzhu Wang Lei Shen Jinsen Cai Deyi Guan Shuilin He 《Molecular Plant Pathology》2018,19(10):2221-2235
11.
12.
Wenwen Tang Jian Yuan Xinya Chen Yuxi Shan Kuntian Luo Zekun Guo Yue Zhang Bo Wan Long Yu 《DNA sequence》2005,16(5):391-396
We report here the cloning and characterization of a novel human cytoplasm-distribution zinc finger protein (CDZFP) gene, isolated from human ovary cDNA library, and mapped to 4p12 by searching the UCSC genomic database. The CDZFP cDNA is 1793 base pairs in length and contains an open reading frame (ORF) encoding 236 amino acids. The CDZFP gene consists of 7 exons and encodes a putative zinc finger protein with a transmembrane region and two zinc finger motifs. Subcellular localization demonstrated that CDZFP protein was located in the cytoplasm when overexpressed in Hela cells and northern blot analysis revealed that CDZFP was ubiquitously expressed in 16 human tissues. 相似文献
13.
14.
15.
Li XA Kokame K Okubo K Shimokado K Tsukamoto Y Miyata T Kato H Yutani C 《Biochimica et biophysica acta》1999,1489(2-3):405-412
This study reports cloning and characterization of a human cDNA encoding a novel human zinc finger protein, ZFD25. ZFD25 cDNA is 6118 bp long and has an open reading frame of 2352 bp that encodes a 783 amino acid protein with 25 C2H2-type zinc fingers. The ZFD25 cDNA also contains a region with high sequence similarity to the Krüppel-associated box A and B domain in the 5'-untranslated region, suggesting that ZFD25 belongs to the Krüppel-associated box zinc finger protein family. The ZFD25 gene was localized to chromosome 7q11.2. Northern blot analysis showed that ZFD25 was expressed in a wide range of human organs. In cultured endothelial cells, the mRNA level was decreased upon serum starvation. 相似文献
16.
C2H2 zinc finger protein genes encode nucleic acid-binding proteins involved in the regulation of gene activity. AtZFP1 (Arabidopsis thaliana zinc finger protein 1) is one member of a small family of C2H2 zinc finger-encoding sequences previously characterized from Arabidopsis. The genomic sequence corresponding to the AtZFP1 cDNA has been determined. Molecular analysis demonstrates that AtZFP1 is a unique, intronless gene which encodes a 1100 nucleotides mRNA highly expressed in roots and stems. A construct in which 2.5 kb of AtZFP1 upstream sequences is linked to the -glucuronidase gene was introduced into Arabidopsis by Agrobacterium-mediated transformation of roots. Histochemical analysis of transgenic Arabidopsis carrying the AtZFP1 promotor:-glucuronidase fusion shows good correlation with RNA blot hybridization analysis. This transgenic line will be a useful tool for analyzing the regulation of AtZFP1 to further our understanding of its function. 相似文献
17.
18.
Egr1 is a highly conserved zinc finger protein which plays important roles in many aspects of vertebrate development and in the adult. The cDNA coding for zebrafish Egr1 was obtained and its expression pattern was examined during zebrafish embryogenesis using whole-mount in situ hybridization. Egr1 mRNA is first detected in adaxial cells in the presomitic mesoderm between 11 and 20 h post-fertilization (hpf), spanning the 4-24 somite stages. Later, Egr1 expression is observed only in specific brain areas, starting at 21 hpf and subsequently increasing in distinct domains of the central nervous system, e.g. in the telencephalon, diencephalon and hypothalamus. Between 24 and 48 hpf, Egr1 is expressed in specific domains of the hypothalamus, mesencephalon, tegmentum, pharynx, retina, otic vesicle and heart. 相似文献
19.
Wenlan Li Jingchao Wang Qi Sun Wencai Li Yanli Yu Meng Zhao Zhaodong Meng 《Functional & integrative genomics》2017,17(6):653-666
The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize. 相似文献
20.
《Gene》1996,174(2):225-233
Members of the CCCH zinc finger (Zf) protein family have in common two or more repeats of a novel Zf motif consisting of Cys and His residues in the form CxsCx5Cx3H [where x is a variable amino acid (aa)]. We used a degenerate polymerase chain reaction (PCR) strategy to clone members of this gene family from Saccharomyces cerevisiae. The deduced aa sequences encoded by these genes, designated CTH1 and CTH2, share 46% overall identity and 59% similarity, largely due to the two highly conserved Zf domains. We found readily detectable expression of a 1.4-kb mRNA encoding Cthlp. The 1.1-kb mRNA encoding Cth2p was barely detectable under normal growth conditions; however, disruption of CTHI resulted in at least a threefold increase in CTH2 mRNA accumulation. No change in phenotype was detected following disruption of CTH1 and CTH2, either singly or together. In contrast, overexpression of the CTH genes or one of the related mammalian genes, tris-tetraprolin (TTP), caused delayed entry of cell cultures into exponential growth, and a decrease in final cell density. Removal of the Zf domain of Cthlp by truncation or deletion completely reversed this slow growth phenotype, indicating that it was mediated through this highly conserved structural motif 相似文献