首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a female patient with a small supernumerary marker chromosome (sSMC) present in mosaic and characterized in detail by fluorescence in situ hybridization (FISH) using all 24 human whole chromosome painting probes, multicolor banding (MCB) and subcentromere specific multicolor FISH (subcenM-FISH). The sSMC was demonstrated to be derived from chromosome 5 and the karyotype of our patient was as follows: 47,XX,+mar.ish r(5)(::p13.2 approximately p13.3-->q11.2::) [60%]/46,XX [40%]. Partial trisomy for the proximal 5p and q chromosomal regions is a rare event. A critical region exists at 5p13 for the phenotype associated with duplication 5p. As far as we know, eight similar cases have been published up to now. We describe a new case which, to our knowledge, is the first characterized in such detail. The role of uniparental disomy (UPD) in cases of SMC is also discussed.  相似文献   

2.
A panel of somatic cell hybrid cell lines containing different parts of human chromosome 20 and fluorescence in situ hybridization have been used to physically localize markers to human chromosome 20. Through these complementary approaches and genetic linkage analysis, D20S16, which is closely linked to the maturity onset diabetes of the young (MODY) locus, was mapped to band 20q12 --> q13.1. The gene for growth hormone-releasing factor (GHRF) was physically mapped and reassigned to 20q11, suggesting that GHRF plays no direct role in MODY. In addition, the genes for the chromosome 20-linked glycogen phosphorylase (GYPB) and the bone morphogenetic protein (BMP2A) have been assigned to chromosome 20p, and the interleukin-6-dependent DNA-binding protein (TCF5) has been assigned to 20q12 --> q13 by hybridization to genomic DNA from the panel of somatic cell hybrid cell lines. These approaches are useful for rapid localization of candidate genes for MODY and other DNA markers mapped to chromosome 20.  相似文献   

3.
Utilizing the FISH technique, the gene for collagen XIV was mapped in the human and the mouse genome. The human gene (COL14A1) was assigned to chromosome bands 8q23-->q24.1. This assignment is in agreement with the localization of the undulin gene (UND), whose product has been suggested to be a variant of collagen XIV. The mouse gene (Col14a1) was assigned to chromosome 15 band D. Thus, collagen XIV represents another example of a gene that belongs to human/mouse homology group 90.  相似文献   

4.
A complex low-repetitive human DNA probe (BAC RP11-35B4) together with two microdissection-derived region-specific probes of the multicolor banding (MCB) probe-set for chromosome 1 were used to re-analyze the evolution of human chromosome 1 in comparison to four ape species. BAC RP11-35B4 derives from 1q21 and contains 143 kb of non-repetitive DNA; however, it produces three specific FISH signals in 1q21, 1p12 and 1p36.1 of Homo sapiens (HSA). Human chromosome 1 was studied in comparison to its homologues in Hylobates lar (HLA), Pongo pygmaeus (PPY), Gorilla gorilla (GGO) and Pan troglodytes (PTR). A duplication of sequences homologous to human 1p36.1 could be detected in PPY plus an additional signal on PPY 16q. The region homologous to HSA 1p36.1 is also duplicated in HLA, and split onto chromosomes 7q and 9p; the region homologous to HSA 1q21/1p12 is present as one region on 5q. Additionally, the breakpoint of a small pericentric inversion in the evolution of human chromosome 1 compared to other great ape species could be refined. In summary, the results obtained here are in concordance with previous reports; however, there is evidence for a deletion of regions homologous to human 1p34.2-->p34.1 during evolution in the Pongidae branch after separation of PPY.  相似文献   

5.
In this report, we describe three unrelated patients with similar symptoms such as mental retardation, growth delay and multiple phenotypic abnormalities. GTG-banding analysis revealed karyotypes with add(1p) in two cases and an add(1q) in the third. Fluorescence in situ hybridization (FISH) analysis using high resolution multicolor banding (MCB) characterized the aberrations of the abnormal chromosomes 1 as a (sub)terminal duplication and inverted duplications, respectively. Although three different chromosomal regions i.e. 1p36.1, 1p36.2-->1p31.3 and 1q41-->1q44 were involved, all three patients had similar patterns of dysmorphic findings. These cases demonstrate the power of MCB in the characterization of small interstitial chromosomal aberrations and resulted in the characterization of three previously unreported congenital chromosome 1 rearrangements.  相似文献   

6.
Murine cDNA clones for three cyclin D genes that are normally expressed during the G1 phase of the cell cycle were used to clone the cognate human genes. Bacteriophage and cosmid clones encompassing five independent genomic loci were partially sequenced and chromosomally assigned by an analysis of somatic cell hybrids containing different human chromosomes and by fluorescence in situ hybridization to metaphase spreads from normal peripheral blood lymphocytes. The human cyclin D1 gene (approved gene symbol, CCND1) was assigned to chromosome band 11q13, cyclin D2 (CCND2) to chromosome band 12p13, and cyclin D3 (CCND3) to chromosome band 6p21. Pseudogenes containing sequences related to cyclin D2 and cyclin D3 mapped to chromosome bands 11q13 and 6p21, respectively. Partial nucleotide sequence analysis of exons within each gene revealed that the authentic human cyclin D genes are more related to their mouse counterparts than to each other. These genes are ubiquitously transcribed in human tumor cell lines derived from different cell lineages, but are independently and, in many cases, redundantly expressed. The complex patterns of expression of individual cyclin D genes and their evolutionary conservation across species suggest that each family member may play a distinct role in cell cycle progression.  相似文献   

7.
Fluorescence in situ hybridization (FISH) banding approaches are standard for the exact characterization of simple, complex, and even cryptic chromosomal aberrations within the human genome. The most frequently applied FISH banding technique is the multicolor banding approach, also abbreviated as m-band, MCB, or in its whole genomic variant multitude MCB (mMCB). MCB allows the differentiation of chromosome region-specific areas at the GTG band and sub-band level and is based on region-specific microdissection libraries, producing changing fluorescence intensity ratios along the chromosomes. The latter are used to assign different pseudocolors to specific chromosomal regions. Here we present the first bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH) mapped, comprehensive, genome-wide human MCB probe set. All 169 region-specific microdissection libraries were characterized in detail for their size and the regions of overlap. In summary, the unique possibilities of the MCB technique to characterize chromosomal breakpoints in one FISH experiment are now complemented by the feature of being anchored within the human DNA sequence at the BAC level.  相似文献   

8.
Summary Localization of chromosome breaks in human chromosomes was analyzed in 264 peripheral lymphocyte cultures. Three hundred and sixty-nine chromosome breaks could be exactly localized to a chromosome band or region of the Paris Conference nomenclature. The distribution of breaks in the chromosome regions was found to be nonrandom. Chromosome 3 alone had 23% of the breaks and region 3p2 had 13% of the total breaks. Some other chromosome regions, such as 5p1, 9q1, 14q2, and 16q2 also displayed clustering of breaks. Sex chromosomes had less breaks than expected. Spontaneous chromosome breaks were almost exclusively located in the lightly stained G bands.Supported by grants from the Foundation for Pediatric Research and Research Foundation of Orion Corporation Ltd.  相似文献   

9.
By fluorescence in situ hybridization (FISH) using mouse probes, we assigned homologues for cathepsin E (Ctse), protocadherin 10 (Pcdh10, alias OL-protocadherin, Ol-pc), protocadherin 13 (Pcdh13, alias protocadherin 2c, Pcdh2c), neuroglycan C (Cspg5) and myosin X (Myo10) genes to rat chromosomes (RNO) 13q13, 2q24-->q25, 18p12-->p11, 8q32.1 and 2q22.1-->q22.3, respectively. Similarly, homologues for mouse Ctse, Pcdh13, Cspg5 and Myo10 genes and homologues for rat Smad2 (Madh2) and Smad4 (Madh4) genes were assigned to Chinese hamster chromosomes (CGR) 5q28, 2q17, 4q26, 2p29-->p27, 2q112-->q113 and 2q112-->q113, respectively. The chromosome assignments of homologues of Ctse and Cspg5 reinforced well-known homologous relationships among mouse chromosome (MMU) 1, RNO 13 and CGR 5q, and among MMU 9, RNO 8 and CGR 4q, respectively. The chromosome locations of homologues for Madh2, Madh4 and Pcdh13 genes suggested that inversion events were involved in chromosomal rearrangements in the differentiation of MMU 18 and RNO 18, whereas most of MMU 18 is conserved as a continuous segment in CGR 2q. Furthermore, the mapping result of Myo10 and homologues suggested an orthologous segment of MMU 15, RNO 2 and CGR 2.  相似文献   

10.
Genomic structure and chromosome mapping of human and mouse RAMP genes   总被引:1,自引:0,他引:1  
The cDNAs for human and murine Receptor Activity Modifying Proteins and for the associated murine Calcitonin Receptor Like Receptor were isolated. The human RAMP1 and RAMP3 genes possess two introns and human RAMP2 possesses three introns. Human RAMP1 was assigned to chromosome 2q36-->q37.1, RAMP2 to 17q12-->q21.1 and RAMP3 to 7p13-->p12. Mouse Ramp1 was assigned to chromosome 1 and Ramp2 and Ramp3 were assigned to chromosome 11.  相似文献   

11.
We have recently mapped the human FCGR2 gene to chromosome 1 bands q23-q24. In situ hybridization of FCGR2 cDNA with a cell line containing a t(1;19)(g23;p13) derived from a patient with pre-B ALL has allowed a more accurate localization of this gene to chromosome 1 band q23. Furthermore, this study indicated a splitting of the FCGR2 gene or gene cluster by the t(1;19). However, Southern analysis showed no genetic rearrangement when compared with a karyotypically normal Epstein-Barr virus (EBV)-transformed cell line from the same patient. This suggests that the translocation breakpoint does not occur within the coding region of this gene.  相似文献   

12.
We report a young girl with microphthalmia, conductive deafness, aortic isthmus stenosis, laryngomalacia, and laryngeal stenosis carrying a de novo supernumerary neocentromeric derivative chromosome 13. For the precise identification and characterization of the eu- and heterochromatic content of the marker chromosome, straightforward molecular cytogenetic analyses were performed, such as chromosome microdissection, FISH with different probes (e.g. wcp, alphoid centromeric probes, BAC), centromere-specific multicolor FISH (cenM-FISH), and multicolor banding (MCB). The analyses demonstrated that the marker consisted of an inverted duplication (partial tetrasomy) of the distal portion of chromosome 13 that was separated from the endogenous chromosome 13 centromere. Using an all-centromere probe and multicolor cenM-FISH, no alpha-satellite DNA hybridization signal was detectable on any portion of the derivative chromosome. The presence of a functional and active neocentromere on the derivative chromosome 13 was confirmed by positive immunofluorescence signals with CENP-C antibodies. BAC-FISH confirmed the cytogenetic localization of the neocentromere in band 13q31.3. Thus the patient had a mosaic conventional karyotype mos 47,XX,+inv dup(13)(qter-->q21.3::q21.3-->q31.3-->neo-->q31.3-->qter)[6]/46,XX [49].  相似文献   

13.
Small supernumerary marker chromosomes (sSMCs) are a morphologically heterogeneous group of additional structurally abnormal chromosomes that cannot be identified unambiguously by conventional banding techniques alone. Molecular cytogenetic methods enable detailed characterization of sSMCs; however, in many cases interpretation of their clinical significance is problematic. The aim of our study was to characterize precisely sSMCs identified in three patients with dysmorphic features, psychomotor retardation and multiple congenital anomalies. We also attempted to correlate the patients' genotypes with phenotypes by inclusion of data from the literature. The sSMCs were initially detected by G-banding analysis in peripheral blood lymphocytes in these patients and were subsequently characterized using multicolor fluorescence in situ hybridization (M-FISH), (sub)centromere-specific multicolor FISH (cenM-FISH, subcenM-FISH), and multicolor banding (MCB) techniques. Additionally, the sSMCs in two patients were also studied by hybridization to whole-genome bacterial artificial chromosome (BAC) arrays (array-CGH) to map the breakpoints on a single BAC clone level. In all three patients, the chromosome origin, structure, and euchromatin content of the sSMCs were determined. In patient RS, only a neocentric r(2)(q35q36) was identified. It is a second neocentric sSMC(2) in the literature and the first marker chromosome derived from the terminal part of 2q. In the other two patients, two sSMCs were found, as M-FISH detected additional sSMCs that could not be characterized in G-banding analysis. In patient MK, each of four cell lines contained der(4)(:p11.1-->q12:) accompanied by a sSMC(18): r(18)(:p11.2-->q11.1::p11.2-->q11.1:), inv dup(18)(:p11.1-->q11.1::q11.1-->p11.1:), or der(18) (:p11.2-->q11.1::q11.1-->p11.1:). In patient NP, with clinical features of trisomy 8p, three sSMCs were characterized: r(8)(:p12-->q11.1::q11.1-->p21:) der(8) (:p11.22-->q11.1::q11.1-->p21::p21-->p11.22:) and der(21)(:p11.1-->q21.3:). The BAC array results confirmed the molecular cytogenetic results and refined the breakpoints to the single BAC clone resolution. However, the complex mosaic structure of the marker chromosomes derived from chromosomes 8 and 18 could only be identified by molecular cytogenetic methods. This study confirms the usefulness of multicolor FISH combined with whole-genome arrays for comprehensive analyses of marker chromosomes.  相似文献   

14.
The human FUT8 gene is implicated in crucial developmental stages and is overexpressed in some tumors and other malignant diseases. Based on three different experiments we have assigned the FUT8 gene to chromosome bands 14q23.2-->q24.1 and not 14q24.3 as previously shown (Yamaguchi et al., 1999). We found a high degree of identity between human and chicken FUT8 sequences. We mapped the chicken FUT8 gene to chromosome 5q1.4 in an internal rearrangement of a region of conserved synteny described between human 14q and chicken chromosome 5. Based on these findings we propose a new gene position correspondence between chicken and human comparative maps.  相似文献   

15.
Summary Lymphocyte cultures from man, gorilla, and chimpanzee were treated with 5-azacytidine and 5-azadeoxycytidine. These cytidine analogues induce common fragile sites in the chromosome bands 1q42 and 19q13 of man. A rare fragile site is induced by 5-azadeoxycytidine in the band 1q24. The optimum conditions required for inducing these new fragile sites were determined by a series of experiments. The common fragile site in human chromosome 1q42 also exists in the gorilla and chimpanzee in the homologous band 1q32. The fragile site in human chromosome 19q13 was demonstrated in the gorilla in the homologous chromosome band 20q13. These are the first examples found of evolutionary highly conserved fragile sites in homologous chromosome bands in related primate species. The interaction between 5-azacytidine, 5-azadeoxycytidine, and chromosomal DNA; the evolutionary conservation of genes located within or closely adjacent to the fragile sites in the chromosome 1 of Hominoidea; and the phylogenetic origin of the two new common fragile sites are discussed.  相似文献   

16.
Chromosome locations of the eight SOX family genes, SOX1, SOX2, SOX3, SOX5, SOX9, SOX10, SOX14 and SOX21, were determined in the chicken by fluorescence in situ hybridization. The SOX1 and SOX21 genes were localized to chicken chromosome 1q3.1-->q3.2, SOX5 to chromosome 1p1.6-->p1.4, SOX10 to chromosome 1p1.6, and SOX3 to chromosome 4p1.2-->p1.1. The SOX2 and SOX14 genes were shown to be linked to chromosome 9 using two-colored FISH and chromosome painting, and the SOX9 gene was assigned to a pair of microchromosomes. These results suggest that these SOX genes form at least three clusters on chicken chromosomes. The seven SOX genes, SOX1, SOX2, SOX3, SOX5, SOX10, SOX14 and SOX21 were localized to chromosome segments with homologies to human chromosomes, indicating that the chromosome locations of SOX family genes are highly conserved between chicken and human.  相似文献   

17.
Nine KOX zinc finger genes were localized on four human chromosomes by in situ hybridization of cDNA probes to metaphase chromosomes. KOX1 (ZNF10), KOX11 (ZNF18), and KOX12 (ZNF19) were mapped to chromosome bands 12q24.33, 17p13-p12, and 16q22-q23, respectively. Six other KOX genes were localized on chromosome 19: KOX6 (ZNF14) and KOX13 (ZNF20) to 19p13.3-p13.2, KOX5 (ZNF13) and KOX22 (ZNF27) to 19q13.2-qter, and KOX24 (ZNF28) and KOX28 (ZNF30) to 19q13.4. Pulsed field gel electrophoresis experiments showed that the pairs of KOX genes found on the chromosome bands 12q24.33, 16q22-q23, 19p13.3-p13.2, or 19q13.3-qter lie within 200–300 kb DNA fragments. This suggests the existence of KOX gene clusters on these chromosomal bands.  相似文献   

18.
Seven genes were assigned by molecular cytogenetic methods to bovine chromosome 5. To accomplish this, specific primers were either publicly available or were designed from highly conserved regions of the publicly available mammalian gene sequences. The identity of the amplified segments was verified by sequencing and alignment with the published sequences. The optimized primers that amplified the desired bovine genes were used for screening a bovine bacterial artificial chromosome library. The positive clones were localized to a specific band of bovine chromosome 5 by fluorescence in situ hybridization. The genes HOXC4, SP1 and IGFBP6 were localized to band q21, COL2A1 was localized to bands q21-q23, IGF1 was localized to band q26, MB to band q31 and the gene CYP2D6 was localized to band q35. The cytogenetic assignment of SP1, IGFBP6, COL2A1, IGF1, MB and CYP2D6 is first reported here and the assignment of HOXC4 refines the previous assignment of this gene. The identification and localization of these genes further support the development of the human to bovine comparative map through characterizing the homologous segments conserved in the evolution of these species. This information will be useful for the future localization of genes that affect economically important traits in bovines.  相似文献   

19.
Hu L  Sham JS  Tjia WM  Tan YQ  Lu GX  Guan XY 《Genomics》2004,83(2):298-302
Chromosomal rearrangements involving telomeric bands have been frequently detected in many malignancies and congenital diseases. To develop a useful tool to study chromosomal rearrangements within the telomeric band effectively and accurately, a whole set of telomeric band painting probes (TBP) has been generated by chromosome microdissection. The intensity and specificity of these TBPs have been tested by fluorescence in situ hybridization and all TBPs showed strong and specific signals to target regions. TBPs of 6q and 17p were successfully used to detect the loss of the terminal band of 6q in a hepatocellular carcinoma cell line and a complex translocation involving the 17p terminal band in a melanoma cell line. Meanwhile, the TBP of 21q was used to detect a de novo translocation, t(12;21), and the breakpoint at 21q was located at 21q22.2. Further application of these TBPs should greatly facilitate the cytogenetic analysis of complex chromosome rearrangements involving telomeric bands.  相似文献   

20.
In their 2002 Guidelines for chromosome analysis of peripheral blood, the American College of Medical Genetics states that "The 550-band stage should be the goal of all constitutional studies..." The College of American Pathologists requires that the average case be analyzed at the 400-band level of resolution for routine work, and that the 550-band level be achieved in appropriate blood samples. The challenge is how to identify the 400, 550, and 850-band levels confidently and consistently. In this study, our objectives were to develop simple and reliable criteria to estimate band level, and to evaluate our laboratory's performance with respect to those criteria. Using the ISCN(1995) ideogram as a reference, candidate bands were selected for the three band levels: 400, 550 and 850. A pilot and two follow-up studies were conducted and a set of candidate bands were validated against the Vancouver method of evaluating band level so that band level scores were similar using either method. The final set of reference bands were the presence of 9q32 and 20q13.2 for the 400-band level; 5q33.2 and 10q22.2 for the 550-band level; and 3p26.1, 18q22.3 and 20q13.32 for the 850-band level. Cell selection improved after each technologist was provided a composite image of chromosomes with reference bands highlighted. The band level criteria presented here involve no band counting, appear to be objective, can help to improve quality and consistency among technologists, and can ensure compliance with regulatory agencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号