首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Glioblastoma multiforme (GBM) is characterized by intratumoral heterogeneity as to both histomorphology and genetic changes, displaying a wide variety of numerical chromosome aberrations the most common of which are monosomy 10 and trisomy 7. Moreover, GBM in vitro are known to have variable karyotypes within a given tumor cell culture leading to rapid karyotype evolution through a high incidence of secondary numerical chromosome aberrations. The aim of our study was to investigate to what extent this mitotic instability of glioblastoma cells is also present in vivo. We assessed the spatial distribution patterns of numerical chromosome aberrations in vivo in a series of 24 GBM using two-color in situ hybridization for chromosomes 7/10, 8/17, and 12/18 on consecutive 6-microm paraffin-embedded tissue slides. The chromosome aberration patterns were compared with the histomorphology of the investigated tumor assessed from a consecutive HE-stained section, and with the in vitro karyotype of cell cultures established from the tumors. All investigated chromosomes showed mitotic instability, i.e., numerical aberrations within significant amounts of tumor cells in a scattered distribution through the tumor tissue. As to chromosomes 10 and 17, only monosomy occurred, as to chromosome 7 only trisomy/polysomy, apparently as a result of selection in favor of the respective aberration. Conversely, chromosomes 8, 12, and 18 displayed scattered patterns of monosomy as well as trisomy within a given tumor reflecting a high mitotic error rate without selective effects. The karyotypes of the tumor cell cultures showed less variability of numerical aberrations apparently due to clonal adaptation to in vitro conditions. We conclude that glioblastoma cells in vivo are characterized by an extensive tendency to mitotic errors. The resulting clonal diversity of chromosomally aberrant cells may be an important biological constituent of the well-known ability of glioblastomas to preserve viable tumor cell clones under adaptive stress in vivo, in clinical terms to rapidly recur after antitumoral therapy including radio- or chemotherapy.  相似文献   

2.
Clinical and molecular cytogenetic studies in a case with partial trisomy 12p due to a de novo supernumerary ring chromosome: We report on a girl with a mosaic karyotype containing a supernumerary ring chromosome. Fluorescence in situ hybridization (FISH) studies showed that this marker chromosome was derived from chromosome 12, resulting in partial trisomy 12p13.1-->12q11. The girl showed developmental delay, cerebral visual impairment, obesity and mild dysmorphic features. Her clinical data at 6 months, 3 years, and 6 years of age were compared with the clinical data on other trisomy 12p patients.  相似文献   

3.
Summary We have investigated cytogenetically a total of 35 solitary lipomas, 10 of which have been reported previously. Of the 25 tumours presented herein for the first time, clonal chromosome aberrations were detected in 17. The remaining eight had normal karyotypes, although two of them had nonclonal aberrations in about one quarter of the cells. Based on the cytogenetic findings in all 35 lipomas, four major subgroups can be distinguished. These are characterized by: (I) hyperdiploid karyotypes including one or more supernumerary ring chromosomes (5 cases); (II) diploid karyotypes with mostly balanced rearrangements involving 12q13-14 (13 cases), including the rearrangement t(3;12) (q27-28;q13-14) in 4 cases; (III) hypodiploid or diploid karyotypes with other aberrations than ring chromosomes or rearrangements of 12q13-14 (8 cases); and (IV) normal karyotypes (9 cases).  相似文献   

4.
Approximately 1 in 500 newborns are born with chromosomal abnormalities that include trisomies, translocations, large deletions, and duplications. There is currently no therapeutic approach for correcting such chromosomal aberrations in vivo or in vitro. When we attempted to produce induced pluripotent stem cell (iPSC) models from patient-derived fibroblasts that contained ring chromosomes, we found that the ring chromosomes were eliminated and replaced by duplicated normal copies of chromosomes through a mechanism of uniparental isodisomy (Bershteyn et al. 2014, Nature 507:99). The discovery of this previously unforeseen system for aberrant chromosome correction during reprogramming enables us for the first time to model and understand this process of cell-autonomous correction of ring chromosomes during human patient somatic cell reprograming to iPSCs. This knowledge could lead to a potential therapeutic strategy to correct common large-scale chromosomal aberrations, termed “chromosome therapy”.  相似文献   

5.
We report a 12-month-old infant evaluated for severe hypotonia, psychomotor retardation, and facial dysmorphisms, including round face, high prominent forehead, downward slanted palpebral fissures, hypertelorism, short nose, chubby cheeks, long philtrum, anteverted lower lip, low-set asymmetric and dysmorphic ears. Karyotype analysis disclosed an extra mosaic ring chromosome, which included the whole 19p arm. Four additional patients with supernumerary ring 19 chromosomes have been reported, but none of them had pure trisomy 19p.  相似文献   

6.
Uniparental disomy has been recently recognized as an important phenomenon in non-Mendelian inheritance of human genetic disorders. Several mechanisms for uniparental disomy, i.e., the presence of two homologous chromosomes derived from one parent, have been proposed. We studied two independent cases of abnormalities of chromosome 21 in which there were abnormal karyotypes at birth but blood cells with normal karyotype predominated later in life, and the cells with abnormalities disappeared. Uniparental isodisomy was observed in the normal cells in these individuals. The uniparental disomy in these families was the result of duplication of a chromosome in mitosis after the loss of the homologous abnormal chromosome. The duplication can be seen as mechanism for cell survival and is called here "compensatory" isodisomy, which provided a selective advantage for the cell population with the normal number of chromosomes 21.  相似文献   

7.
Unstable, gene-rich pericentric regions have been associated with various structural aberrations including small supernumerary marker chromosomes (sSMCs). We hereby report on a new sSMC derived from chromosome 14, generating trisomy 14pter → q12 in a child with severe neurodevelopmental delay. The patient featured facial dysmorphism, generalized hypotonia, transverse palmar creases, structural brain abnormality, and severe cognitive and motor impairment. Literature review indicated this to be a unique case of sSMC 14 which was only composed of pter → q12, and the phenotype secondary to duplications of the similar region partially overlaps with the phenotype reported in this study. The genetic analysis on our case helps to better delineate karyotype–phenotype correlations between proximal trisomy 14 and associated clinical phenomena, and we also propose that the involved chromosomal regions may contain dosage-sensitive genes which are important for the development.  相似文献   

8.
De novo chromosome structural abnormalities cannot always be diagnosed by the use of standard cytogenetic techniques. We applied a previously developed chromosome-band-specific painting method to the diagnosis of such rearrangements. The diagnostic procedures consisted of microdissection of an aberrant chromosomal region of a given patient, polymerase chain reaction (PCR) amplification of the dissected chromosomal DNA, and subsequent competitive fluorescence in situ hybridization (FISH) using the PCR products as a probe pool on metaphase chromosomes from the patient and/or a karyotypically normal person. With this strategy, we studied 6 de novo rearrangements (6p+, 6q+, 9p+, 17p+, +mar, and +mar) in 6 patients. These rearrangements had been seen by conventional banding but their origin could not be identified. In all 6 patients, we successfully ascertained the origin. Using an aberrant region-specific probe pool, FISH signals appeared on both the aberrant region and a region of another specific chromosome pair. A reverse probe pool that was generated through the microdissection of normal chromosomes at a candidate region for the origin of the aberration hybridized with both the aberrant and the candidate regions. We thus diagnosed one patient with 17p+ as having trisomy for 14q32-qter, one with 9p+ as having trisomy for 12pter-p12, one with 6q+ as having a tandem duplication (trisomy) of a 6q23-q25 segment, one with 6p+ as having a tandem duplication (trisomy) of a 6p23-q21.3 segment, one with a supernumerary metacentric marker chromosome as having tetrasomy for 18pter-cen, and the last with an additional small marker chromosome as having trisomy for 18p11.1 (or p11.2)-q11.2. The present targeted chromosome-band-painting method provides the simple and rapid preparation of a probe pool for region-specific FISH, and is useful for the diagnosis of chromosome abnormalities of unknown origin.  相似文献   

9.
Maternal uniparental disomy for the entire chromosome 7 (matUPD7) has been reported several times in Silver-Russell syndrome (SRS) and growth-restricted patients. Here we present our results from the analysis of an abortion with confined placental mosaicism (CPM) for trisomy 7 which showed a maternal meiotic origin of the trisomy in the placenta and rescue to maternal UPD7 in foetal membrane. Furthermore, two newly detected SRS cases with maternal UPD7 revealed isodisomy and partial heterodisomy, respectively. Summarising these results with those published previously on the origin of UPD7, similar numbers of isodisomy (n=11) and cases with complete or partial heterodisomy (n=12) have been reported. In respect to the different formation mechanisms of UPD, complete isodisomy should be the result of a post-zygotic mitotic segregation error, whereas heterodisomic UPDs should be caused by trisomic rescue after meiotic non-disjunction events. In maternal UPD7, 50% of cases seem to be caused by post-zygotic mitotic segregation errors, which is similar to the situation in trisomy 7. This result corresponds to the situation in trisomy 8 but is in contrast to observations in the frequent aneuploidies. Thus, the different findings in these aberrations reflect the presence of multiple factors that act to ensure normal segregation, varying in importance for each chromosome.  相似文献   

10.
Studies of human hematologic malignancies have provided sufficient data not only for the identification of nonrandom abnormalities of whole chromosomes, but also for determination of the specific chromosome regions involved. In clonal aberrations leading to an excess of chromosome No. 1, or a partial excess of No. 1, trisomy for bands 1q25 to 1q32 was noted in the myeloid cells obtained from every one of 35 patients who had various disorders, such as acute leukemia, polycythemia vera, or myelofibrosis. Similar chromosome changes were a consistent finding in various solid tumors as well. This rearrangement was not the result of a particularly fragile site in that region of the chromosome, since the break points in reciprocal translocations that involve No. 1 occurred almost exclusively in the short arm. The nonrandom chromosome changes found in neoplastic cells can now be correlated with the gene loci on these chromosomes or chromosome segments as an attempt is made to identify specific genes that might be related to malignancy.  相似文献   

11.
Trisomy 7 and sex chromosome loss in human brain tissue   总被引:8,自引:0,他引:8  
Short-term cultures of nonneoplastic brain tissue from 11 patients, seven of whom had a malignant brain tumor, were cytogenetically examined. In only a single case was a wholly normal chromosome complement detected; the remaining ten cases exhibited mosaicism with clonal numerical aberrations found alongside cells carrying a normal karyotype. The abnormal clones were characterized by trisomy 7, the loss of the Y chromosome in men and an X chromosome in women, or by combinations thereof. No structural aberrations were present. Our findings demonstrate that although -Y, -X, and +7 have in the past repeatedly been associated with brain tumors, these changes presumably reflect normal in vivo organ mosaicism and, thus, should not be accepted as neoplasia-specific in this context.  相似文献   

12.
The frequency of small supernumerary marker chromosomes has been estimated to approximately 0.45 per 1000 newborns. They are usually seen as single marker chromosomes in a mosaic state. Two cytogenetically identical markers have been observed only occasionally. We report on a boy, with congenital heart defect, neonatal hypotonia, hypogenitalism, delayed psychomotor development and mild dysmorphic facial features. The GTG karyotype performed on peripheral blood lymphocytes revealed a mosaic male karyotype with three cell lines. One cell line had a normal karyotype. In the other two either single or double chromosome 6 derived supernumerary markers were present, leading to partial trisomy or partial tetrasomy of chromosome 6, respectively.  相似文献   

13.
Adopting a mating system involving two different Robertsonian translocations with monobrachial homology, we studied the early development of mouse embryos trisomic or tetrasomic for chromosome 11. A developmental delay of 12-24 hours was evident in trisomic embryos at embryonic day (E)7.5, whereas tetrasomic embryos apparently had stopped growth by E6.5 without formation of extraembryonic structures. This extremely severe developmental abnormality found in tetrasomic embryos is similar to that reported in embryos having two active X chromosomes in extraembryonic cell lineages. Autosomal tetrasomy, but not autosomal trisomy, can lead to such early developmental errors. Thus, a reasonable inference would be that the X chromosome is twice as active as the autosome. Probably, the X chromosome became upregulated in response to the evolutionary necessity of minimizing haplo-insufficiency brought about by miniaturization of the Y chromosome.  相似文献   

14.
Uniparental disomy (UPD) involving several different chromosomes has been described in several cases of human pathologies. In order to investigate whether UPD for chromosome 21 is associated with abnormal phenotypes, we analyzed DNA polymorphisms in DNA from a family with de novo Robertsonian translocation t(21q;21q). The proband was a healthy male with 45 dup(21q) who was ascertained through his trisomy 21 offspring. No phenotypic abnormalities were noted in the physical exam, and his past medical history was unremarkable. We obtained genotypes for the proband and his parents' leukocyte DNAs from 17 highly informative short sequence repeat polymorphisms that map in the pericentromeric region and along the entire length of 21q. The order of the markers has been previously determined through the linkage and physical maps of this chromosome. For the nine informative markers there was no maternal allele contribution to the genotype of the proband; in addition, there was always reduction to homozygosity of a paternal allele. These data indicated that there was paternal uniparental isodisomy for chromosome 21 (pUPiD21). We conclude that pUPiD21 is not associated with abnormal phenotypes and that there are probably no imprinted genes on chromosome 21.  相似文献   

15.
Neocentromeres are fully functional centromeres that have arisen in previously noncentromeric chromosomal locations on rearranged chromosomes. The formation of neocentromeres results in the mitotic stability of chromosomal fragments that do not contain endogenous centromeres and that would normally be lost. Here we describe a unique collection of eight independent patient-derived cell lines, each of which contains a neocentromere on a supernumerary inversion duplication of a portion of human chromosome 13q. Findings in these patients reveal insight into the clinical manifestations associated with polysomy for portions of chromosome 13q. The results of FISH and immunofluorescent analysis of the neocentromeres in these chromosomes confirm the lack of alpha-satellite DNA and the presence of CENtromere proteins (CENP)-C, -E, and hMAD2. The positions of the inversion breakpoints in these chromosomes have been placed onto the physical map of chromosome 13, by means of FISH mapping with cosmid probes. These cell lines define, within chromosome 13q, at least three distinct locations where neocentromeres have formed, with five independent neocentromeres in band 13q32, two in band 13q21, and one in band 13q31. The results of examination of the set of 40 neocentromere-containing chromosomes that have thus far been described, including the 8 neocentromere-containing chromosomes from chromosome 13q that are described in the present study, suggest that chromosome 13q has an increased propensity for neocentromere formation, relative to some other human chromosomes. These neocentromeres will provide the means for testing hypotheses about sequence requirements for human centromere formation.  相似文献   

16.
The supernumerary B chromosome of maize is dispensable, containing no vital genes, and thus is variable in number and presence in lines of maize. In order to be maintained in populations, it has a drive mechanism consisting of nondisjunction at the pollen mitosis that produces the two sperm cells, and then the sperm with the two B chromosomes has a preference for fertilizing the egg as opposed to the central cell in the process of double fertilization. The sequence of the B chromosome coupled with B chromosomal aberrations has localized features involved with nondisjunction and preferential fertilization, which are present at the centromeric region. The predicted genes from the sequence have paralogues dispersed across all A chromosomes and have widely different divergence times suggesting that they have transposed to the B chromosome over evolutionary time followed by degradation or have been co-opted for the selfish functions of the supernumerary chromosome.  相似文献   

17.
K Hayashi  W Schmid 《Humangenetik》1975,30(2):135-141
Chromosome studies on lymphocyte cultures were performed in 5 patients with AT, 2 of whom had been followed for 4 years. Four out of these patients showed an increased incidence of chromosome-type aberrations. A clonal development was present in one patient, 96% of his metaphases containing a tandem duplication of almost the entire long arm 14. Four years earlier the proportion of these cells was 80%. Two other patients presented a small proportion of cells with an unidentified abnormally long D chromosome. In a total of 724 metaphases from 4 patients 31 dicentric chromosomes were observed, all of a peculiar type; in their formation no chromosome material was lost and they all seem to have arisen by end-to-end fusions. The incidence of chromatid-type aberrations was normal or at the upper limit of control values in all 5 cases. The sister chromatid exchange rate studied with BUDR in 3 patients was found to be normal.  相似文献   

18.
Uniparental disomy of chromosome 14 (UPD 14) results in one of two distinct abnormal phenotypes, depending upon the parent of origin. This discordance may result from the reciprocal over-expression and/or under-expression of one or more imprinted genes. We report a case of segmental paternal isodisomy for chromosome 14 with features similar to those reported in other paternal disomy 14 cases. Microsatellite marker analysis revealed an apparent somatic recombination event in 14q12 leading to proximal biparental inheritance, but segmental paternal uniparental isodisomy distal to this site. Analysis of monochromosomal somatic cell hybrids containing either the paternally inherited or the maternally inherited chromosome 14 revealed no deletion of the maternally inherited chromosome 14 and demonstrated the presence of paternal sequences from D14S121 to the telomere on both chromosomes 14. Thus, the patient has paternal isodisomy for 14q12-14qter. Because the patient shows most of the features associated with paternal disomy 14, this supports the presence of the imprinted domain(s) distal to 14q12 and suggests that the proximal region of chromosome 14 does not contain imprinted genes that contribute significantly to the paternal UPD 14 phenotype.  相似文献   

19.
Gametocidal (Gc) chromosomes induce various types of chromosomal mutations during gametogenesis in the chromosomes of common wheat and alien chromosomes added to common wheat. However, it is not yet known whether the Gc chromosome causes aberrations at the nucleotide level because mutations caused by Gc chromosomes have been studied only by cytological screening. In order to know whether the Gc chromosome induces point mutations, we conducted PCR analysis and sequencing with the progeny of a common wheat line that is disomic for barley chromosome 2H and monosomic for Gc chromosome 2C. We analyzed 18 2H-specific EST sequences using 81 progeny plants carrying a cytologically normal-appearing 2H chromosome and found no nucleotide changes in the analyzed 1,419 sequences (in total 647,075 bp). During this analysis, we found six plants for which some ESTs could not be PCR amplified, suggesting the presence of chromosomal mutations in these plants. The cytological and PCR analyses of the progeny of the six plants confirmed the occurrence of chromosomal mutations in the parental plants. These results suggested that the Gc chromosome mostly induced chromosomal aberrations, not nucleotide changes, and that the Gc-induced chromosomal mutations in the six plants occurred after fertilization.  相似文献   

20.
In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号