首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morrison SE  Saez A  Lau B  Salzman CD 《Neuron》2011,71(6):1127-1140
The orbitofrontal cortex (OFC) and amygdala are thought to participate in reversal learning, a process in which cue-outcome associations are switched. However, current theories disagree on whether OFC directs reversal learning in the amygdala. Here, we show that during reversal of cues' associations with rewarding and aversive outcomes, neurons that respond preferentially to stimuli predicting aversive events update more quickly in amygdala than OFC; meanwhile, OFC neurons that respond preferentially to reward-predicting stimuli update more quickly than those in the amygdala. After learning, however, OFC consistently differentiates between impending reinforcements with?a shorter latency than the amygdala. Finally, analysis of local field potentials (LFPs) reveals a disproportionate influence of OFC on amygdala that emerges after learning. We propose that reversal learning is supported by complex interactions between neural circuits spanning the amygdala and OFC, rather than directed by any single structure.  相似文献   

2.
Nahum L  Gabriel D  Schnider A 《PloS one》2011,6(1):e16173
Acute lesions of the posterior medial orbitofrontal cortex (OFC) in humans may induce a state of reality confusion marked by confabulation, disorientation, and currently inappropriate actions. This clinical state is strongly associated with an inability to abandon previously valid anticipations, that is, extinction capacity. In healthy subjects, the filtering of memories according to their relation with ongoing reality is associated with activity in posterior medial OFC (area 13) and electrophysiologically expressed at 220-300 ms. These observations indicate that the human OFC also functions as a generic reality monitoring system. For this function, it is presumably more important for the OFC to evaluate the current behavioral appropriateness of anticipations rather than their hedonic value. In the present study, we put this hypothesis to the test. Participants performed a reversal learning task with intermittent absence of reward delivery. High-density evoked potential analysis showed that the omission of expected reward induced a specific electrocortical response in trials signaling the necessity to abandon the hitherto reward predicting choice, but not when omission of reward had no such connotation. This processing difference occurred at 200-300 ms. Source estimation using inverse solution analysis indicated that it emanated from the posterior medial OFC. We suggest that the human brain uses this signal from the OFC to keep thought and behavior in phase with reality.  相似文献   

3.
Representation of spatial goals in rat orbitofrontal cortex   总被引:4,自引:0,他引:4  
The orbitofrontal cortex (OFC) is thought to participate in making and evaluating goal-directed decisions. In rodents, spatial navigation is a major mode of goal-directed behavior, and anatomical and lesion studies implicate the OFC in spatial processing, but there is little direct evidence for coding of spatial or motor variables. Here, we recorded from ventrolateral and lateral OFC in an odor-cued two-alternative choice task requiring orientation and approach to spatial goal ports. In this context, over half of OFC neurons encoded choice direction or goal port location. A subset of neurons was jointly selective for the trial outcome and port location, information useful for the selection or evaluation of spatial goals. These observations show that the rodent OFC not only encodes information relating to general motivational significance, as shown previously, but also encodes spatiomotor variables needed to define specific behavioral goals and the locomotor actions required to attain them.  相似文献   

4.
The responses of 3687 neurons in the macaque primary taste cortex in the insula/frontal operculum, orbitofrontal cortex (OFC) and amygdala to oral sensory stimuli reveals principles of representation in these areas. Information about the taste, texture of what is in the mouth (viscosity, fat texture and grittiness, which reflect somatosensory inputs), temperature and capsaicin is represented in all three areas. In the primary taste cortex, taste and viscosity are more likely to activate different neurons, with more convergence onto single neurons particularly in the OFC and amygdala. The different responses of different OFC neurons to different combinations of these oral sensory stimuli potentially provides a basis for different behavioral responses. Consistently, the mean correlations between the representations of the different stimuli provided by the population of OFC neurons were lower (0.71) than for the insula (0.81) and amygdala (0.89). Further, the encoding was more sparse in the OFC (0.67) than in the insula (0.74) and amygdala (0.79). The insular neurons did not respond to olfactory and visual stimuli, with convergence occurring in the OFC and amygdala. Human psychophysics showed that the sensory spaces revealed by multidimensional scaling were similar to those provided by the neurons.  相似文献   

5.
There is a growing consensus that the brain makes simple choices, such as choosing between an apple and an orange, by assigning value to the options under consideration, and comparing those values to make a choice. There is also a consensus that value signals computed in orbitofrontal cortex (OFC) and amygdala play a critical role in the choice process. However, the nature of the flow of information between OFC and amygdala at the time of decision is still unknown. In order to study this question, simultaneous local field potentials were recorded from OFC and amygdala in human patients while they performed a simple food choice task. Although the interaction of these circuits has been studied in animals, this study examines the effective connectivity directly in the human brain on a moment-by-moment basis. A spectral conditional Granger causality analysis was performed in order to test if the modulation of activity goes mainly from OFC-to-amygdala, from amygdala-to-OFC, or if it is bi-directional. Influence from amygdala-to-OFC was dominant prior to the revealed choice, with a small but significant OFC influence on the amygdala earlier in the trial. Alpha oscillation amplitudes analyzed with the Hilbert-Huang transform revealed differences in choice valence coincident with temporally specific amygdala influence on the OFC.  相似文献   

6.
Significance of the right and left orbitofrontal cortex (OFC) in recovery after acute brainstem lesion (at the level of n. Deiters) was investigated using rat model of complex brainstem-orbitofrontal cerebral damage. It was found that the right-side lesion of the OFC combined with isolated brainstem damage resulted in aggravation of the animal condition and highly probable lethal outcome within the first two weeks after surgery (because of the brain circulation disorder of hemorrhagic type). It may be associated with sympathetic activation. It is suggested that a certain "stimulation" of the left OFC (as the effect of its incomplete destruction) involves a parasympathetic compensatory reaction that allows animals with a severe brainstem pathology to survive. It is shown that, with the general nonspecific tendency to postoperative increase in emotionality, the greatest shifts in the emotional sphere take place under conditions of a combined damage of the brainstem and left OFC.  相似文献   

7.
The authors studied the effect of electric acupuncture stimulation (EAP) on the changes in pain thresholds prior to and after removal of the orbito-frontal cortex (OFC) of the brain in behavioral experiments on adult cats. Removal of OFC increased the thresholds of pain response at the 4th and the 5th levels of the conventional scale, reflecting emotionally-affective manifestations of pain, and intensified the effect of antinociceptive EAP. The results obtained are analysed in relation to the inhibitory tonic effect of OFC on antinociceptive structures of the brain. Different effects of OFC and somatosensory cortex on the antinociceptive structures of the brain are discussed.  相似文献   

8.
Damage to orbitofrontal cortex (OFC) has long been associated with deficits in reversal learning. OFC damage also causes inflexible associative encoding in basolateral amygdala (ABL) during reversal learning. Here we provide a critical test of the hypothesis that the reversal deficit in OFC-lesioned rats is caused by this inflexible encoding in ABL. Rats with bilateral neurotoxic lesions of OFC, ABL, or both areas were tested on a series of two-odor go/no-go discrimination problems, followed by two serial reversals of the final problem. As expected, all groups acquired the initial problems at the same rate, and rats with OFC lesions were slower to acquire the reversals than sham controls. This impairment was abolished by accompanying ABL lesions, while ABL lesions alone had no effect on reversal learning. These results are consistent with the hypothesis that OFC facilitates cognitive flexibility by promoting updating of associative encoding in downstream brain areas.  相似文献   

9.
10.
Selective attention is thought to be associated with enhanced processing in modality-specific cortex. We used functional magnetic resonance imaging to evaluate brain response during a taste detection task. We demonstrate that trying to detect the presence of taste in a tasteless solution results in enhanced activity in insula and overlying operculum. The same task does not recruit orbitofrontal cortex (OFC). Instead, the OFC responds preferentially during receipt of an unpredicted taste stimulus. These findings demonstrate functional specialization of taste cortex in which the insula and the overlying operculum are recruited during taste detection and selective attention to taste, and the OFC is recruited during receipt of an unpredicted taste stimulus.  相似文献   

11.
A bovine oviductal fluid catalase (OFC) which preferentially binds to the acrosome surface of some mammalian spermatozoa has recently been purified. The objectives of this study were to clone the OFC, obtain the full-length cDNA and protein sequence and determine which characteristics of the proteins are associated with the binding of the enzyme to sperm surface. Northern blot analysis revealed low levels of catalase mRNA in bovine oviducts and uterus compared to the liver and kidney. Screening of a cDNA library from the cow oviduct permit to obtain a full-length cDNA of 2282 bp, with an open reading frame of 1581 bp coding for a deduced protein of 526 amino acids (59 789 Da). The deduced protein contained four potential N-glycosylation sites and many potential O-glycosylation sites. The OFC protein exhibited high identity with catalase from other bovine tissues, likewise with catalases from human fibroblast and kidney, and with rat liver catalase. The homology of amino acid sequence of OFC with bovine liver catalase was about 99%. However the OFC posses an extended carboxyl terminus of 20 amino acids not present on the liver catalase. This result is supported by a lower mobility of the OFC compared to the liver catalase when both proteins are submitted on SDS-PAGE. Mol. Reprod. Dev. 51:265–273, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Both orbitofrontal cortex (OFC) and ventral striatum (vStr) have been identified as key structures that represent information about value in decision-making tasks. However, the dynamics of how this information is processed are not yet understood. We recorded ensembles of cells from OFC and vStr in rats engaged in the spatial adjusting delay-discounting task, a decision-making task that involves a trade-off between delay to and magnitude of reward. Ventral striatal neural activity signalled information about reward before the rat''s decision, whereas such reward-related signals were absent in OFC until after the animal had committed to its decision. These data support models in which vStr is directly involved in action selection, but OFC processes decision-related information afterwards that can be used to compare the predicted and actual consequences of behaviour.  相似文献   

13.
Gu CY  An SC 《动物学研究》2011,32(3):329-336
为了探讨眶额叶(orbital frontal cortex,OFC)GABA及其B型受体在应激性抑郁行为发生中的作用及其影响机制,实验采用强迫游泳方法建立急性应激抑郁模型。在OFC区微量注射γ-氨基丁酸(γ-aminobutyric acid,GABA)及其B型受体阻断剂,通过开场实验、强迫游泳方式检测动物行为学表现,用免疫组织化学染色和Western blotting方法检测OFC区Kalirin表达,用高尔基染色法观察锥体细胞树突和树突棘。结果显示:强迫游泳应激引起动物抑郁样行为表现,同时,OFC区Kalirin阳性颗粒数及表达量显著减少,且锥体细胞树突棘密度下降;OFC区微量注射GABA具有抗抑郁效应,使OFC区Kalirin表达显著升高,锥体细胞树突棘密度增加;GABA-B型受体阻断剂CGP35348可以抑制GABA的这种效应。由此可见,通过强迫游泳应激诱发的抑郁样的行为变化与OFC区Kalirin表达减少和神经元树突棘密度降低有关,GABA可能通过GABA-B型受体增加OFC区Kalirin表达,以防止神经元退行性变化而产生抗抑郁作用。  相似文献   

14.
The reactions of 164 neurons of the orbitofrontal cortex (OFC) to stimulation of the mediodorsal nucleus of the thalamus (MD), the amygdaloid complex, and various sections of the hypothalamus, were investigated in acute experiments on cats. Stimulation of the MD led to the development in OFC neurons of reactions with a short (sometimes less than 6 msec) and stable latent period. Similar reactions were observed upon stimulation of the lateral amygdaloid nuclei. Stimulation of the basal and central nuclei of the amygdala evoked synchronization of the discharges in OFC neurons. Stable responses of OFC neurons developed from nuclei of the hypothalamus only in the lateral region. Stimulation of the other nuclei of the hypothalamus was accompanied by irregular responses or synchronization of the discharges. In an analysis of the material obtained, the functional characteristics of the connections between the structures investigated and OFC neurons were examined.State Medical Institute, Kemerovo. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 484–490, September–October, 1971.  相似文献   

15.
利用旷场测试和Y-迷宫测试两种行为模型检测了双侧眶额叶(orbitofrontal cortex, OFC)电损伤或假损伤雄性SD大鼠的新异性探索行为, 探讨了OFC在大鼠探索新异环境中的作用。旷场测试的结果发现,OFC损伤大鼠的行走距离和直立次数较假损组有明显降低;同时,在Y-迷宫测试中与假损伤组大鼠相比,OFC损伤大鼠在新异臂的访问时间和穿梭次数明显降低。提示眶额叶皮质在大鼠新异性探索行为中起着重要作用。  相似文献   

16.
Fronto-striatal circuits are hypothesized to be involved in the pathophysiology of obsessive-compulsive disorder (OCD). Within this circuitry, ventral frontal regions project fibers to the ventral striatum (VS) and dorsal frontal regions to the dorsal striatum. Resting state fMRI research has shown higher functional connectivity between the orbitofrontal cortex (OFC) and the dorsal part of the VS in OCD patients compared to healthy controls (HC). Therefore, we hypothesized that in OCD the OFC predominantly project fibers to the more dorsal part of the VS, and that the structural connectivity between the OFC and VS is higher compared to HC. A total of 20 non-medicated OCD patients and 20 HC underwent diffusion-weighted imaging. Connectivity-based parcellation analyses were performed with the striatum as seed region and the OFC, dorsolateral prefrontal cortex, and dorsal anterior cingulate cortex as target regions. Obtained connectivity maps for each frontal region of interest (ROI) were normalized into standard space, and Z-component (dorsal–ventral) coordinate of center-of-gravity (COG) were compared between two groups. Probabilistic tractography was performed to investigate diffusion indices of fibers between the striatum and frontal ROIs. COG Z-component coordinates of connectivity maps for OFC ROI were located in the more dorsal part of the VS in OCD patients compared to HC. Fractional anisotropy of fibers between the OFC and the striatum was higher in OCD patients compared to HC. Part of the pathophysiology of OCD might be understood by altered topography and structural connectivity of fibers between the OFC and the striatum.  相似文献   

17.
Pseudomonas exotoxin A (PE) is a cytotoxin composed of three structural domains. Domain I is responsible for cell binding, domain II for membrane translocation enabling access to the cytosol, and domain III for the catalytic inactivation of protein synthesis, which results in cell death. To investigate the role of the six alpha-helices (A-F) that form the translocation domain, we deleted them successively one at a time. All mutants showed native cell-binding and catalytic activities, indicating that deletions specifically affected translocation activity. This step of the intoxication procedure was examined directly using a cell-free translocation assay, and indirectly by monitoring cytotoxicity. Translocation activity and log(cytotoxicity) were highly correlated, directly indicating that translocation is rate limiting for PE intoxication. Deletion of B, C and D helices resulted in non-toxic and non-translocating molecules, whereas mutants lacking the A or E helix displayed significant cytotoxicity albeit 500-fold lower than native PE. We concluded that B, C and D helices, which make up the core of domain II, are essential, whereas the more peripheral A and E helices are comparatively dispensable. The last helix (F) is inhibitory for translocation because its deletion produced a mutant displaying a translocation activity 60% higher than PE, along with a three- to sixfold increase in cytotoxicity in all tested cell lines. This toxin is the most in vitro active PE mutant obtained until now. Finally, partial duplication of domain II did not give rise to a more actively translocated PE, but rather to a threefold less active molecule.  相似文献   

18.
Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.  相似文献   

19.
Orbitofrontal cortex (OFC, Brodmann area 10) gray matter volume reductions and selective reductions in docosahexaenoic acid (DHA, 22:6n-3) are observed in adult patients with major depressive disorder (MDD). OFC gray matter volume also decreases with advancing age in healthy subjects. To examine if OFC gray matter DHA composition decreases during normal aging, we determined age-related changes in OFC gray matter fatty acid composition by gas chromatography in subjects aged 29-80 years (n=30). We additionally determined elongase (HELO1), delta-5 desaturase (FASD1), delta-6 desaturase (FASD2), peroxisomal (PEX19), and stearoyl-CoA desaturase (SCD) mRNA expression in the same tissues. Increasing age was associated with a progressive decline in polyunsaturated fatty acid (PUFA) composition, including DHA and arachidonic acid (AA, 20:4n-6), and transient, apparently compensatory, elevations in elongase and desaturase gene expression. The age-related reduction in PUFA composition was inversely correlated with SCD expression and activity resulting in elevations in monounsaturated fatty acid composition. These dynamic age-related changes in OFC gray matter fatty acid composition and biosynthetic gene expression may contribute to the progressive decline in OFC gray matter volume found with advancing age. The implications of age-related reductions in OFC PUFA composition for affective dysregulation in the elderly are discussed.  相似文献   

20.
The genetic defect causing von Recklinghausen neurofibromatosis (NF1) has been mapped to the proximal long arm of chromosome 17 by linkage analysis. Flanking markers have been identified, bracketing NF1 in 17q11.2 and laying the foundation for isolating the disease gene. Recently, a family in which a mother and her two children show both the symptoms of NF1 and the presence of a balanced translocation, t(1;17)(p34.3;q11.2), has been identified. We have examined the possibility that the translocation has occurred in or near the NF1 gene by constructing a somatic cell hybrid line containing the derivative chromosome 1 (1qter-p34.3::17q11-qter). On chromosome 1, the breakpoint occurred between SRC2 and D1S57, which are separated by 14 cM. The translocation breakpoint was localized on chromosome 17 between D17S33 and D17S57, markers that also flank NF1 within a region of 4 cM. These data are consistent with the possibility that the translocation event is the cause of NF1 in this pedigree. Consequently, the isolation of the translocation breakpoint, by approach from either the chromosome 1 or the chromosome 17 side, may facilitate the identification of the NF1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号