首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microdomains, or lipid rafts, are transient membrane regions enriched in sphingolipids and sterols that have only recently, but intensively, been studied in plants. In this work, we report a detailed, easy-to-follow, and fast procedure to isolate detergent-resistant membranes (DRMs) from purified plasma membranes (PMs) that was used to obtain DRMs from Phaseolus vulgaris and Nicotiana tabacum leaves and germinating Zea mays embryos. Characterized according to yield, ultrastructure, and sterol composition, these DRM preparations showed similarities to analogous preparations from other eukaryotic cells. Isolation of DRMs from germinating maize embryos reveals the presence of microdomains at very early developmental stages of plants.  相似文献   

2.
Insenser M  Nombela C  Molero G  Gil C 《Proteomics》2006,6(Z1):S74-S81
Lipid rafts are membrane microdomains with a higher amount of saturated fatty acids and sterols than the rest of the membrane. They are more resistant to the action of non-anionic detergents, and are called, for this reason, detergent-resistant membranes (DRMs). Lipid rafts are involved in many cellular processes, like signaling, cytokinesis, response to environment, etc., and therefore must contain important proteins. We have obtained a fraction enriched in proteins from Candida albicans DRMs. The sample has been analyzed by SDS-PAGE and 29 proteins have been identified including markers for lipid rafts in Saccharomyces cerevisiae, like Pma1p and a glycosylphosphatidylinositol (GPI)-anchored protein belonging to the Phr family. Ecm33p, a GPI-anchored protein involved in cell wall biogenesis, has been found for the first time in lipid rafts. We have also identified proteins implicated in protein glycosylation, like the mannosyltransferases Mnn7p, Pmt2p and Mnt1p; proteins involved in lipid metabolism, like Erg11p and Scs7p; and heat shock proteins, like Ssa1p and Hsp90p. Most of the proteins identified are located in plasma, mitochondrial, Golgi or ER membranes, supporting the postulated existence of lipid-raft domains in all the membranes.  相似文献   

3.
Detergent-resistant membranes (DRMs) from Leishmania (Viannia) braziliensis promastigotes, insoluble in 1% Triton X-100 at 4 degrees C, were fractionated by sucrose density gradient ultracentrifugation. They were composed of glycoinositolphospholipids (GIPLs), inositol phosphorylceramide (IPC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and sterols. In contrast, 1% Triton X-100-soluble fraction was composed of PE, phosphatidylcholine, phosphatidylserine, PI, IPC, sterol, and lyso-PI. High-performance thin-layer chromatography (HPTLC) immunostaining using monoclonal antibody SST-1 showed that 85% of GIPLs are present in DRMs, and immunoelectron microscopic analysis showed that SST-1-reactive components are located in patches along the parasite surface. No difference in GIPL pattern was observed by HPTLC between Triton X-100-soluble versus -insoluble fractions at 4 degrees C. Analysis of fatty acid composition in DRMs by GC-MS showed the presence of GIPLs containing an alkylacylglycerol, presenting mainly saturated acyl and alkyl chains. DRMs also contained sterol, IPC with saturated fatty acids, PI with at least one saturated acyl chain, and PE with predominantly oleic acid. Promastigotes treated with methyl-beta-cyclodextrin to disrupt lipid microdomains showed significantly lower macrophage infectivity, suggesting a relationship between lipid microdomains and the infectivity of these parasites.  相似文献   

4.
Leukocytes and other cells show an enhanced intensity of mobile lipid in their 1H NMR spectra under a variety of conditions. Such conditions include stimulation, which has recently been shown to involve detergent-resistant, plasma membrane domains (DRMs) often called lipid rafts. As there is much speculation surrounding the origin of cellular NMR-visible lipid, we analysed subcellular fractions, including DRMs, by NMR spectroscopy. We demonstrated that DRMs isolated by density gradient centrifugation from lymphoid (CEM-T4, stimulated Jurkat cells), and monocytoid (THP-1) cells produced NMR-visible, lipid signals. Large scale subfractionation of THP-1 cells determined that while cytoplasmic lipid droplets constituted much of the total NMR-visible lipid, the contribution of DRMs was significant. Qualitative and quantitative lipid analyses revealed that DRMs and lipid droplets differed in their lipid composition. DRMs were enriched in cholesterol and ganglioside GM1, and contained relatively unsaturated fatty acids compared with the lipid droplets. Both lipid droplets and DRMs contained neutral lipids (triacylgycerols, cholesterol ester, fatty acids in THP-1 cells) that could, in addition to phospholipids, contribute to the NMR-visible lipid. The lipid droplets also exhibited different protein profiles and contained 500-fold less protein than DRMs, confirming that DRMs and droplets were fractionated as separate entities. The NMR-visible lipid in DRMs is therefore unlikely to be a contaminant from lipid droplets. We propose a micropartitioning of the NMR-visible mobile lipid of whole cells between intracellular lipid droplets, where most of this lipid resides, and detergent-resistant plasma membrane domains.  相似文献   

5.
Several lines of evidence suggest that polymerization of the amyloid beta-peptide (Abeta) into amyloid plaques is a pathogenic event in Alzheimer's disease (AD). Abeta is produced from the amyloid precursor protein as the result of sequential proteolytic cleavages by beta-secretase and gamma-secretase, and it has been suggested that these enzymes could be targets for treatment of AD. gamma-Secretase is an aspartyl protease complex, containing at least four transmembrane proteins. Studies in cell lines have shown that gamma-secretase is partially localized to lipid rafts, which are detergent-resistant membrane microdomains enriched in cholesterol and sphingolipids. Here, we studied gamma-secretase in detergent-resistant membranes (DRMs) prepared from human brain. DRMs prepared in the mild detergent CHAPSO and isolated by sucrose gradient centrifugation were enriched in gamma-secretase components and activity. The DRM fraction was subjected to size-exclusion chromatography in CHAPSO, and all of the gamma-secretase components and a lipid raft marker were found in the void volume (> 2000 kDa). Co-immunoprecipitation studies further supported the notion that the gamma-secretase components are associated even at high concentrations of CHAPSO. Preparations from rat brain gave similar results and showed a postmortem time-dependent decline in gamma-secretase activity, suggesting that DRMs from fresh rat brain may be useful for gamma-secretase activity studies. Finally, confocal microscopy showed co-localization of gamma-secretase components and a lipid raft marker in thin sections of human brain. We conclude that the active gamma-secretase complex is localized to lipid rafts in human brain.  相似文献   

6.
Recent data suggest that membrane microdomains or rafts that are rich in sphingolipids and cholesterol are important in signal transduction and membrane trafficking. Two models of raft structure have been proposed. One proposes a unique role for glycosphingolipids (GSL), suggesting that GSL-head-group interactions are essential in raft formation. The other model suggests that close packing of the long saturated acyl chains found on both GSL and sphingomyelin plays a key role and helps these lipids form liquid-ordered phase domains in the presence of cholesterol. To distinguish between these models, we compared rafts in the MEB-4 melanoma cell line and its GSL-deficient derivative, GM-95. Rafts were isolated from cell lysates as detergent-resistant membranes (DRMs). The two cell lines had very similar DRM protein profiles. The yield of DRM protein was 2-fold higher in the parental than the mutant line, possibly reflecting cytoskeletal differences. The same amount of DRM lipid was isolated from both lines, and the lipid composition was similar except for up-regulation of sphingomyelin in the mutant that compensated for the lack of GSL. DRMs from the two lines had similar fluidity as measured by fluorescence polarization of diphenylhexatriene. Methyl-beta-cyclodextrin removed cholesterol from both cell lines with the same kinetics and to the same extent, and both a raft-associated glycosyl phosphatidylinositol-anchored protein and residual cholesterol showed the same distribution between DRMs and the detergent-soluble fraction after cholesterol removal in both cell lines. Finally, a glycosyl phosphatidylinositol-anchored protein was delivered to the cell surface at similar rates in the two lines, even after cholesterol depletion with methyl-beta-cyclodextrin. We conclude that GSL are not essential for the formation of rafts and do not play a major role in determining their properties.  相似文献   

7.
The existence of sphingolipid- and sterol-enriched microdomains, known as lipid rafts, in the plasma membrane (PM) of eukaryotic cells is well documented. To obtain more insight into the lipid molecular species required for the formation of microdomains in plants, we have isolated detergent (Triton X-100)-resistant membranes (DRMs) from the PM of Arabidopsis (Arabidopsis thaliana) and leek (Allium porrum) seedlings as well as from Arabidopsis cell cultures. Here, we show that all DRM preparations are enriched in sterols, sterylglucosides, and glucosylceramides (GluCer) and depleted in glycerophospholipids. The GluCer of DRMs from leek seedlings contain hydroxypalmitic acid. We investigated the role of sterols in DRM formation along the secretory pathway in leek seedlings. We present evidence for the presence of DRMs in both the PM and the Golgi apparatus but not in the endoplasmic reticulum. In leek seedlings treated with fenpropimorph, a sterol biosynthesis inhibitor, the usual Delta(5)-sterols are replaced by 9beta,19-cyclopropylsterols. In these plants, sterols and hydroxypalmitic acid-containing GluCer do not reach the PM, and most DRMs are recovered from the Golgi apparatus, indicating that Delta(5)-sterols and GluCer play a crucial role in lipid microdomain formation and delivery to the PM. In addition, DRM formation in Arabidopsis cells is shown to depend on the unsaturation degree of fatty acyl chains as evidenced by the dramatic decrease in the amount of DRMs prepared from the Arabidopsis mutants, fad2 and Fad3+, affected in their fatty acid desaturases.  相似文献   

8.
In recent years, our understanding of the plasma membrane has changed considerably as our knowledge of lipid microdomains has expanded. Lipid microdomains include structures known as lipid rafts and caveolae, which are readily identified by their unique lipid constituents. Cholesterol, sphingolipids and phospholipids with saturated fatty acyl chain moieties are highly enriched in these lipid microdomains. Lipid rafts and caveolae have been shown to play an important role in the compartmentalization, modulation and integration of cell signaling. Therefore, these microdomains may have an influential role in human disease. Dietary n-3 polyunsaturated fatty acids (PUFA) ameliorate a number of human diseases including coronary heart disease, autoimmune and inflammatory disorders, diabetes, obesity and cancer, which has been generally linked to its membrane remodeling properties. Recent in vitro evidence suggests that perturbations in membrane composition alter the function of resident proteins and, consequently, cellular responses. This review examines the role of n-3 PUFA in modulating the lipid composition and functionality of lipid microdomains and its potential significance to human health.  相似文献   

9.
Microdomains in the plasma membrane (PM) have been proposedto be involved in many important cellular events in plant cells.To understand the role of PM microdomains in plant cold acclimation,we isolated the microdomains as detergent-resistant plasma membranefractions (DRMs) from Arabidopsis seedlings and compared lipidand protein compositions before and after cold acclimation.The DRM was enriched in sterols and glucocerebrosides, and theproportion of free sterols in the DRM increased after cold acclimation.The protein-to-lipid ratio in the DRM was greater than thatin the total PM fraction. The protein amount recovered in DRMsdecreased gradually during cold acclimation. Cold acclimationfurther resulted in quantitative changes in DRM protein profiles.Subsequent mass spectrometry and Western blot analyses revealedthat P-type H+-ATPases, aquaporins and endocytosis-related proteinsincreased and, conversely, tubulins, actins and V-type H+-ATPasesubunits decreased in DRMs during cold acclimation. Functionalcategorization of cold-responsive proteins in DRMs suggeststhat plant PM microdomains function as platforms of membranetransport, membrane trafficking and cytoskeleton interaction.These comprehensive changes in microdomains may be associatedwith cold acclimation of Arabidopsis.  相似文献   

10.
Membrane heterogeneity plays a significant role in regulating signal transduction and other cellular activities. We examined the protein and lipid components associated with the detergent-resistant membrane (DRM) fractions from retinal rod outer segment (ROS) disk and plasma membrane-enriched preparations. Proteomics and correlative western blot analysis revealed the presence of α and β subunits of the rod cGMP-gated ion channel and glucose transporter type 1, among other proteins. The glucose transporter was present exclusively in ROS plasma membrane (not disks) and was highly enriched in DRMs, as was the cGMP-gated channel β-subunit. In contrast, the majority of rod opsin and ATP-binding cassette transporter A4 was localized to detergent-soluble domains in disks. As expected, the cholesterol : fatty acid mole ratio was higher in DRMs than in the corresponding parent membranes (disk and plasma membranes, respectively) and was also higher in disks compared to plasma membranes. Furthermore, the ratio of saturated : polyunsaturated fatty acids was also higher in DRMs compared to their respective parent membranes (disk and plasma membranes). These results confirm that DRMs prepared from both disks and plasma membranes are enriched in cholesterol and in saturated fatty acids compared to their parent membranes. The dominant fatty acids in DRMs were 16 : 0 and 18 : 0; 22 : 6n3 and 18 : 1 levels were threefold higher and twofold lower, respectively, in disk-derived DRMs compared to plasma membrane-derived DRMs. We estimate, based on fatty acid recovery that DRMs account for only ∼ 8% of disks and ∼ 12% of ROS plasma membrane.  相似文献   

11.
Lipid rafts are membrane microdomains enriched in cholesterol, sphingolipids, and glycolipids that have been implicated in many biological processes. Since cholesterol is known to play a key role in the entry of some other viruses, we investigated the role of cholesterol and lipid rafts in the host cell plasma membrane in Newcastle Disease Virus (NDV) entry. We used methyl-β-cyclodextrin (MβCD) to deplete cellular cholesterol and disrupt lipid rafts. Our results show that the removal of cellular cholesterol partially reduces viral binding, fusion and infectivity. MβCD had no effect on the expression of sialic acid containing molecule expression, the NDV receptors in the target cell. All the above-described effects were reversed by restoring cholesterol levels in the target cell membrane. The HN viral attachment protein partially localized to detergent-resistant membrane microdomains (DRMs) at 4°C and then shifted to detergent-soluble fractions at 37°C. These results indicate that cellular cholesterol may be required for optimal cell entry in NDV infection cycle.  相似文献   

12.
The proton-pumping H+-ATPase, Pma1p, is an abundant and very long lived polytopic protein of the yeast plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as a model to study plasma membrane biogenesis. Pma1p associates with detergent-resistant membrane domains (lipid "rafts") already in the ER, and a lack of raft association correlates with mistargeting of the protein to the vacuole, where it is degraded. We are analyzing the role of specific lipids in membrane domain formation and have previously shown that surface transport of Pma1p is independent of newly synthesized sterols but that sphingolipids with C26 very long chain fatty acid are crucial for raft association and surface transport of Pma1p (Gaigg, B., Timischl, B., Corbino, L., and Schneiter, R. (2005) J. Biol. Chem. 280, 22515-22522). We now describe a more detailed analysis of the function that sphingolipids play in this process. Using a yeast strain in which the essential function of sphingolipids is substituted by glycerophospholipids containing C26 very long chain fatty acids, we find that sphingolipids per se are dispensable for raft association and surface delivery of Pma1p but that the C26 fatty acid is crucial. We thus conclude that the essential function of sphingolipids for membrane domain formation and stable surface delivery of Pma1p is provided by the C26 fatty acid that forms part of the yeast ceramide.  相似文献   

13.
《Experimental parasitology》2010,124(3):334-340
The main aim of this work was to assign the cuticular lipids identified in a parasitic nematode and to distinguish those originating from its host. The hypothesis that long-chained fatty acids and sterols are imported by the parasite in the absence of certain enzymes was also tested. The organisms (Anisakis simplex and Gadus morhua) were extracted in petroleum ether and dichloromethane. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF) was used to identify unknown components, and electrospray ionization mass spectrometry (ESI/MS) to verify recognized groups of lipids. The lipid classes identified in the surface layer were free saturated and unsaturated fatty acids, triacylglycerols, sterols and non-polar sphingolipids (ceramides, sphingoid bases). The most abundant fraction consisted of fatty acids. The predominant saturated acids were tetradecanoic acid in the petroleum ether extract of A. simplex, hexadecanoic acid in the dichloromethane extract of A. simplex, and also the polyunsaturated octadecahexaenoic and octadecatrienoic acids in both extracts of the parasitic nematode. The mass spectrum revealed the presence of fatty acids with different numbers of carbons, and with odd and even numbers of unsaturated bonds. The MALDI-TOF mass spectrum also identified triacylglycerols (TAGs). The dominant short-chain TAGs were CoCoCy:1, CoCoPg and Bu0:0B:6. The majority of TAGs were found in the ether and dichloromethane extracts of A. simplex. Sterols were the least common class of lipids found in the nematode extracts; most likely, this is the fraction that is entirely incorporated from the host organism because of the parasite’s inability to synthesize them. MALDI-TOF also identified non-polar sphingolipids - ceramides and sphingoid bases. The signals due to N-octanoyl-d-erythro-octasphinganine (m/z 288.3) and N-tetranoyl-d-erythro-tetradecasphinganine (m/z 316.4) were dominant on the mass spectra; quite a large number of short-chain non-polar sphingolipids were also identified.  相似文献   

14.
15.
Formation of human immunodeficiency virus type 1 (HIV-1) particles takes place at the plasma membrane of cells and is directed by the Pr55Gag polyprotein. A functional assembly domain (the M domain) within the N-terminal portion of Pr55Gag mediates the interaction of Gag with cellular membranes. However, the determinants that provide specificity for assembly on the plasma membrane, as opposed to intracellular membranes, have not been identified. Recently, it was reported that Pr55Gag interacts with lipid raft microdomains of the plasma membrane. We sought to identify the domains within Pr55Gag that contribute to lipid raft association of Gag. Here we demonstrate that the I domain is required for interaction with detergent-resistant membrane fractions (DRMs). Mutation of key I-domain residues or loss of myristylation abrogated the association of Gag with DRMs. Thus, the I domain and the M domain combine to mediate Gag-lipid raft interactions as defined by these biochemical criteria. However, Gag protein complexes defined by flotation studies were much denser than classical lipid rafts, failed to incorporate classical lipid raft marker proteins, and were not disrupted by cholesterol extraction. Large sheets of Gag protein were identified in DRM fractions upon examination by electron microscopy. These results indicate that HIV-1 Pr55Gag forms detergent-resistant complexes at the cellular periphery that are distinct from lipid raft microdomains.  相似文献   

16.
Lipids of chicken epidermis   总被引:1,自引:0,他引:1  
The lipids from chicken epidermis were analyzed by a combination of quantitative thin-layer and gas-liquid chromatography and by chemical and spectroscopic methods. The lipid groups present included wax diesters (34%), triglycerides (32%), sterols (11%), phospholipids (11%), nonphosphorus-containing sphingolipids (3%), beta-D-glucosylsterols (3%), 6-O-acyl-beta-D-glucosylsterols (2%), steryl esters (1%), cholesteryl sulfate (1%), and free fatty acids (1%). The major phospholipids were phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, and the sphingolipids included ceramides, glucosylceramides, O-acylceramides, and O-acylglucosylceramides. Glucosylsterols and acylglucosylsterols have not been found in mammalian skin, and may be relevant to the evolutionary history of the epidermal water barrier. The wax diesters contained mainly 16-, 18-, and 20-carbon saturated fatty acids esterified to 20- through 24-carbon threo and erythro 2,3-diols, while the chicken epidermal triglycerides contained some very long-chain (26-40 carbon) saturated fatty acids. These wax diesters and unusual triglycerides may be of significance in human health.  相似文献   

17.
Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4?°C and 37?°C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs – a detergent that preferentially solubilizes the membrane inner leaflet – while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.  相似文献   

18.
One of the hallmarks of mammalian sperm capacitation is the loss of cholesterol from the plasma membrane. Cholesterol has been associated with the formation of detergent insoluble membrane microdomains in many cell types, and sperm from several mammalian species have been shown to contain detergent-resistant membranes (DRMs). The change in cholesterol composition of the sperm plasma membrane during capacitation raises the question of whether the contents of DRMs are altered during this process. In this study, we investigated changes in protein composition of DRMs isolated from uncapacitated or capacitated mouse sperm. TX-100 insoluble membranes were fractionated by sucrose flotation gradient centrifugation and analyzed by Western and lectin blotting, and capacitation-related differences in protein composition were identified. Following capacitation, the detergent insoluble fractions moved to lighter positions on the sucrose gradients, reflecting a global change in density or composition. We identified several individual proteins that either became enriched or depleted in DRM fractions following capacitation. These data suggest that the physiological changes in sperm motility, ability to penetrate the zona pellucida (ZP), ZP responsiveness, and other capacitation-dependent changes, may be due in part to a functional reorganization of plasma membrane microdomains.  相似文献   

19.
The formation of cholesterol and sphingolipids into specialized liquid-ordered membrane microdomains (rafts) has been proposed to function in the intracellular sorting and transport of proteins and lipids. Defined by biochemical criteria, rafts resist solubilization in nonionic detergents, enabling them to be isolated as detergent-resistant membranes (DRM). In this study, we characterized the lipid composition of DRM from a cell model of the sphingolipid storage disorder, Gaucher disease, in which the catabolism of the sphingolipid glucosylceramide (GC) is impaired. In this cell model, we showed that GC accumulated primarily in the DRM, with smaller secondary increases in ceramide, dihexosylceramide, trihexosylceramide, and phosphatidylglycerol. This suggested that not only was lipid metabolism altered as a consequence of the cells' inability to degrade GC, but this affected the DRM rather than other regions of the membrane. This increase in lipids in the DRM may be responsible for the altered lipid and protein sorting seen in Gaucher disease. Analysis of individual lipid species revealed preservation of the shorter and fully saturated fatty acid species in the DRM, suggesting that the highly ordered and tightly packed nature of the DRM is maintained.  相似文献   

20.
Matto M  Rice CM  Aroeti B  Glenn JS 《Journal of virology》2004,78(21):12047-12053
A subpopulation of hepatitis C virus (HCV) core protein in cells harboring full-length HCV replicons is biochemically associated with detergent-resistant membranes (DRMs) in a manner similar to that of markers of classical lipid rafts. Core protein does not, however, colocalize in immunofluorescence studies with classical plasma membrane raft markers, such as caveolin-1 and the B subunit of cholera toxin, suggesting that core protein is bound to cytoplasmic raft microdomains distinct from caveolin-based rafts. Furthermore, while both the structural core protein and the nonstructural protein NS5A associate with membranes, they do not colocalize in the DRMs. Finally, the ability of core protein to localize to the DRMs did not require other elements of the HCV polyprotein. These results may have broad implications for the HCV life cycle and suggest that the HCV core may be a valuable probe for host cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号