首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   

2.
The visual pigment rhodopsin is a prototypical seven transmembrane helical G protein-coupled receptor. Photoisomerization of its protonated Schiff base (PSB) retinylidene chromophore initiates a progression of metastable intermediates. We studied the structural dynamics of receptor activation by FTIR spectroscopy of recombinant pigments. Formation of the active state, Meta II, is characterized by neutralization of the PSB and its counterion Glu113. We focused on testing the hypothesis of a PSB counterion switch from Glu113 to Glu181 during the transition of rhodopsin to the still inactive Meta I photointermediate. Our results, especially from studies of the E181Q mutant, support the view that both Glu113 and Glu181 are deprotonated, forming a complex counterion to the PSB in rhodopsin, and that the function of the primary counterion shifts from Glu113 to Glu181 during the transition to Meta I. The Meta I conformation in the E181Q mutant is less constrained compared with that of wild-type Meta I. In particular, the hydrogen bonded network linking transmembrane helices 1, 2, and 7, adopts a conformation that is already Meta II-like, while other parts of the receptor appear to be in a Meta I-like conformation similar to wild-type. We conclude that Glu181 is responsible, in part, for controlling the extraordinary high pK(a) of the chromophore PSB in the dark state, which very likely decreases upon transition to Meta I in a stepwise weakening of the interaction between PSB and its complex counterion during the course of receptor activation. A model for the specific role in coupling chromophore isomerization to protein conformational changes concomitant with receptor activation is presented.  相似文献   

3.
Magic-angle spinning NMR spectra have been obtained of the bathorhodopsin photointermediate trapped at low temperature (less than 130 K) by using isorhodopsin samples regenerated with retinal specifically 13C-labeled at positions 8, 10, 11, 12, 13, 14, and 15. Comparison of the chemical shifts of the bathorhodopsin resonances with those of an all-trans-retinal protonated Schiff base (PSB) chloride salt show the largest difference (6.2 ppm) at position 13 of the protein-bound retinal. Small differences in chemical shift between bathorhodopsin and the all-trans PSB model compound are also observed at positions 10, 11, and 12. The effects are almost equal in magnitude to those previously observed in rhodopsin and isorhodopsin. Consequently, the energy stored in the primary photoproduct bathorhodopsin does not give rise to any substantial change in the average electron density at the labeled positions. The data indicate that the electronic and structural properties of the protein environment are similar to those in rhodopsin and isorhodopsin. In particular, a previously proposed perturbation near position 13 of the retinal appears not to change its position significantly with respect to the chromophore upon isomerization. The data effectively exclude charge separation between the chromophore and a protein residue as the main mechanism for energy storage in the primary photoproduct and argue that the light energy is stored in the form of distortions of the bathorhodopsin chromophore.  相似文献   

4.
Retinal cis-trans isomerization and early relaxation steps have been studied in a 10-ns molecular dynamics simulation of a fully hydrated model of membrane-embedded rhodopsin. The isomerization, induced by transiently switching the potential energy function governing the C(11)==C(12) dihedral angle of retinal, completes within 150 fs and yields a strongly distorted retinal. The most significant conformational changes in the binding pocket are straightening of retinal's polyene chain and separation of its beta-ionone ring from Trp-265. In the following 500 ps, transition of 6s-cis to 6s-trans retinal and dramatic changes in the hydrogen bonding network of the binding pocket involving the counterion for the protonated Schiff base, Glu-113, occur. Furthermore, the energy initially stored internally in the distorted retinal is transformed into nonbonding interactions of retinal with its environment. During the following 10 ns, increased mobilities of some parts of the protein, such as the kinked regions of the helices, mainly helix VI, and the intracellular loop I2, were observed, as well as transient structural changes involving the conserved salt bridge between Glu-134 and Arg-135. These features prepare the protein for major structural transformations achieved later in the photocycle. Retinal's motion, in particular, can be compared to an opening turnstile freeing the way for the proposed rotation of helix VI. This was demonstrated by a steered molecular dynamics simulation in which an applied torque enforced the rotation of helix VI.  相似文献   

5.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

6.
The visual pigment rhodopsin is characterized by an 11-cis retinal chromophore bound to Lys-296 via a protonated Schiff base. Following light absorption the C(11)=C(12) double bond isomerizes to trans configuration and triggers protein conformational alterations. These alterations lead to the formation of an active intermediate (Meta II), which binds and activates the visual G protein, transducin. We have examined by UV-visible and Fourier transform IR spectroscopy the photochemistry of a rhodopsin analogue with an 11-cis-locked chromophore, where cis to trans isomerization around the C(11)=C(12) double bond is prevented by a 6-member ring structure (Rh(6.10)). Despite this lock, the pigment was found capable of forming an active photoproduct with a characteristic protein conformation similar to that of native Meta II. This intermediate is further characterized by a protonated Schiff base and protonated Glu-113, as well as by its ability to bind a transducin-derived peptide previously shown to interact efficiently with native Meta II. The yield of this active photointermediate is pH-dependent and decreases with increasing pH. This study shows that with the C(11)=C(12) double bond being locked, isomerization around the C(9)=C(10) or the C(13)=C(14) double bonds may well lead to an activation of the receptor. Additionally, prolonged illumination at pH 7.5 produces a new photoproduct absorbing at 385 nm, which, however, does not exhibit the characteristic active protein conformation.  相似文献   

7.
R D Calhoon  R R Rando 《Biochemistry》1985,24(23):6446-6452
The absorption of a photon of light by rhodopsin results in the cis to trans isomerization of the 11-cis-retinal Schiff base chromophore. In the studies reported here, an attempt is made to determine the mechanism of the energization of rhodopsin as it relates to the chemistry of the isomerization process and the geometrical state of the chromophore. Studies were performed with vitamin A analogues to probe this mechanism. Both 11-cis-7,8-dihydroretinal and 9-cis-7,8-dihydroretinal form bleachable pigments when combined with opsin. Photolysis of these pigments in the presence of G-protein results in the activation of the latter as revealed by its GTPase activity. Phosphodiesterase is also activated when it is included in the incubation. Therefore, the possibility that rhodopsin is energized by mechanisms involving photochemically induced charge transfer from the protonated Schiff base to the beta-ionone ring can be discarded. Further studies were conducted with all-trans-vitamin A derivatives to determine if these compounds can form the GTPase-activating state R*, a situation that is possible, in principle, by microscopic reversibility. Neither all-trans-retinal nor its oxime, when incubated with bovine opsin in the dark, caused activation of the GTPase, requiring at least a 5 kcal/mol energy gap between them. Furthermore, stoichiometric adducts of all-trans-retinoids and opsin were also unable to mediate activation of the GTPase. Since both all-trans-15,16-dihydroretinylopsin and all-trans-retinoylopsin possess an all-trans-retinoid permanently adducted to opsin, it can be concluded that the all-trans-retinoid chromophore-opsin linkage may be necessary but not sufficient to achieve activation of the visual pigment.  相似文献   

8.
《Biophysical journal》2022,121(21):4109-4118
The rhodopsin mimic is a chemically synthetized complex with retinyl Schiff base (RSB) formed between protein and the retinal chromophore that can mimic the natural rhodopsin-like protein. The artificial rhodopsin mimic is more stable and designable than the natural protein and hence has wider uses in photon detection devices. The mimic structure RSB, like the case in the actual rhodopsin-like protein, undergoes isomerization and protonation throughout the photoreaction process. As a result, understanding the dynamics of the RSB in the photoreaction process is critical. In this study, the ultrafast transient absorption spectra of three mutants of the cellular retinoic acid-binding protein II-based rhodopsin mimic at acidic environment were recorded, from which the related excited-state dynamics of the all-trans protonated RSB (AT-PRSB) were investigated. The transient fluorescence spectra measurements are used to validate some of the dynamic features. We find that the excited-state dynamics of AT-PRSB in three mutants share a similar pattern that differs significantly from the dynamics of 15-cis PRSB of the rhodopsin mimic in neutral solution. By comparing the dynamics across the three mutants, we discovered that the aromatic residues near the β-ionone ring structure of the retinal may help stabilize the AT-PRSB and hence slow down its isomerization rate. The experimental results provide implications on designing a rhodopsin-like protein with significant infrared fluorescence, which can be particularly useful in the applications in biosensing or bioimaging in deeper tissues.  相似文献   

9.
We present molecular dynamics simulations of bovine rhodopsin in a membrane mimetic environment based on the recently refined X-ray structure of the pigment. The interactions between the protonated Schiff base and the protein moiety are explored both with the chromophore in the dark-adapted 11-cis and in the photoisomerized all-trans form. Comparison of simulations with Glu181 in different protonation states strongly suggests that this loop residue located close to the 11-cis bond bears a negative charge. Restrained molecular dynamics simulations also provide evidence that the protein tightly confines the absolute conformation of the retinal around the C12-C13 bond to a positive helicity. 11-cis to all-trans isomerization leads to an internally strained chromophore, which relaxes after a few nanoseconds by a switching of the ionone ring to an essentially planar all-trans conformation. This structural transition of the retinal induces in turn significant conformational changes of the protein backbone, especially in helix VI. Our results suggest a possible molecular mechanism for the early steps of intramolecular signal transduction in a prototypical G-protein-coupled receptor.  相似文献   

10.
With the aim of preparing a light-stable rhodopsin-like pigment, an analog, II, of 11-cis retinal was synthesized in which isomerization of the C11-C12 cis-double bond is blocked by a cyclohexene ring built around the C10 to C13-methyl. The analog II formed a rhodopsin-like pigment (rhodopsin-II) with opsin expressed in COS-1 cells and with opsin from rod outer segments. The rate of rhodopsin-II formation from II and opsin was approximately 10 times slower than that of rhodopsin from 11-cis retinal and opsin. After solubilization in dodecyl maltoside and immunoaffinity purification, rhodopsin-II displayed an absorbance ratio (A280nm/A512nm) of 1.6, virtually identical with that of rhodopsin. Acid denaturation of rhodopsin-II formed a chromophore with lambda max, 452 nm, characteristic of protonated retinyl Schiff base. The ground state properties of rhodopsin-II were similar to those of rhodopsin in extinction coefficient (41,200 M-1 cm-1) and opsin-shift (2600 cm-1). Rhodopsin-II was stable to hydroxylamine in the dark, while light-dependent bleaching by hydroxylamine was slowed by approximately 2 orders of magnitude relative to rhodopsin. Illumination of rhodopsin-II for 10 s caused approximately 3 nm blue-shift and 3% loss of visible absorbance. Prolonged illumination caused a maximal blue-shift up to approximately 20 nm and approximately 40% loss of visible absorbance. An apparent photochemical steady state was reached after 12 min of illumination. Subsequent acid denaturation indicated that the retinyl Schiff base linkage was intact. A red-shift (approximately 12 nm) in lambda max and a 45% recovery of visible absorbance was observed after returning the 12-min illuminated pigment to darkness. Rhodopsin-II showed marginal light-dependent transducin activation and phosphorylation by rhodopsin kinase.  相似文献   

11.
R Vogel  G B Fan  F Siebert  M Sheves 《Biochemistry》2001,40(44):13342-13352
In rhodopsin, the retinal chromophore is covalently bound to the apoprotein by a protonated Schiff base, which is stabilized by the negatively charged counterion Glu113, conferring upon it a pK(a) of presumably >16. Upon photoexcitation and conformational relaxation of the initial photoproducts, the Schiff base proton neutralizes the counterion, a step that is considered a prerequisite for formation of the active state of the receptor, metarhodopsin II (MII). We show that the pK(a) of the Schiff base drops below 2.5 in MII. In the presence of solute anions, however, it may be increased considerably, thereby leading to the formation of a MII photoproduct with a protonated Schiff base (PSB) absorbing at 480 nm. This PSB is not stabilized by Glu113, which is shown to be neutral, but by stoichiometric binding of an anion near the Schiff base. Protonation of the Schiff base in MII changes neither coupling to G protein, as assessed by binding to a transducin-derived peptide, nor the conformation of the protein, as judged by FTIR and UV spectroscopy. A PSB and an active state conformation are therefore compatible, as suggested previously by mutants of rhodopsin. The anion specificity of the stabilization of the PSB follows the series thiocyanate > iodide > nitrate > bromide > chloride > sulfate in order of increasing efficiency. This specificity correlates inversely with the strength of hydration of the respective anion species in solution and seems therefore to be determined mainly by its partitioning into the considerably less polar protein interior.  相似文献   

12.
Synthesis of the retinal analog, 10,20-methanoretinal (R6), where the 11Z conformation is locked in a six-membered ring, yielded four stereoisomers (7E,9E,13E, 7E,9E,13Z, 7E,9Z,13E and 7E,9Z,13Z). These four isomers were separated by straight-phase isocratic HPLC and identified by 1H-NMR and NOE analysis. All isomers smoothly recombined with bovine opsin at a relatively high rate (5-10% of that of the natural chromophore 11Z-retinal). The corresponding 13E and 13Z isomers yielded identical analog pigments, probably due to rapid thermal isomerization around the C13 = C14 double bond. The (7E,9E)-isomers produced a pigment with maximal absorbance at 510 nm, while the pigment produced from the (7E,9Z)-isomers had maximal absorbance at 494 nm. Based upon kinetic considerations, the chromophore structure in the 510-nm-absorbing pigment should be (7E,9E,13E), i.e. equivalent to 11Z-retinal and rhodopsin, while the chromophore structure in the 494-nm-absorbing pigment should be (7E,9Z,13Z), i.e. equivalent to (9Z,11Z,13Z)-rhodopsin, an isorhodopsin analog. In analogy to the 11-cis-locked rhodopsin analogs Rh5 and Rh7, the 510-nm-absorbing pigment, (7E,9E,13E)-10,20-methanorhodopsin, was dubbed Rh6 and the 494-nm-absorbing pigment. (7E,9Z,13Z)-10,20-methanorhodopsin, was dubbed Iso6. The opsin shift of Rh6 (2660 cm-1) is practically identical to that of rhodopsin itself (2650 cm-1). Rh6 and Iso6 are nearly as stable as rhodopsin towards hydroxylamine and solubilization in detergent solution and could be easily purified and reconstituted into proteoliposomes by established procedures. Due to the 11-cis-lock, Rh6 is much less photolabile (bleaching rate less than 1%) than rhodopsin, but it is not completely photostable, probably since photoisomerization around the C7 = C8, C9 = C10 and C13 = C14 bonds is allowed. Illumination of either Rh6 or Iso6 does not generate the common photointermediates but instead produces a complex pattern of photochemical transitions, which during continuous illumination leads to the same final steady state, absorbing at 498 nm. This process is accompanied by a slow but steady loss of pigment, probably due to hydrolytic release of chromophore, which is markedly accelerated in the presence of hydroxylamine. In a physiological assay (light-dependent activation of rod cGMP phosphodiesterase) Rh6 is only marginally active and this probably reflects conformational changes accompanying the above-mentioned photochemical transitions. This supports the concept that normal rhodopsin-based phototransduction requires 11Z to all-E isomerization.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts   总被引:2,自引:0,他引:2  
C Pande  A Pande  K T Yue  R Callender  T G Ebrey  M Tsuda 《Biochemistry》1987,26(16):4941-4947
We report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 degrees C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements at 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approximately 1660 cm-1 in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a protonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same.  相似文献   

14.
Rhodopsin bears 11-cis-retinal covalently bound by a protonated Schiff base linkage. 11-cis/all-trans isomerization, induced by absorption of green light, leads to active metarhodopsin II, in which the Schiff base is intact but deprotonated. The subsequent metabolic retinoid cycle starts with Schiff base hydrolysis and release of photolyzed all-trans-retinal from the active site and ends with the uptake of fresh 11-cis-retinal. To probe chromophore-protein interaction in the active state, we have studied the effects of blue light absorption on metarhodopsin II using infrared and time-resolved UV-visible spectroscopy. A light-induced shortcut of the retinoid cycle, as it occurs in other retinal proteins, is not observed. The predominantly formed illumination product contains all-trans-retinal, although the spectra reflect Schiff base reprotonation and protein deactivation. By its kinetics of formation and decay, its low temperature photointermediates, and its interaction with transducin, this illumination product is identified as metarhodopsin III. This species is known to bind all-trans-retinal via a reprotonated Schiff base and forms normally in parallel to retinal release. We find that its generation by light absorption is only achieved when starting from active metarhodopsin II and is not found with any of its precursors, including metarhodopsin I. Based on the finding of others that metarhodopsin III binds retinal in all-trans-C(15)-syn configuration, we can now conclude that light-induced formation of metarhodopsin III operates by Schiff base isomerization ("second switch"). Our reaction model assumes steric hindrance of the retinal polyene chain in the active conformation, thus preventing central double bond isomerization.  相似文献   

15.
A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin   总被引:3,自引:0,他引:3  
H Deng  R H Callender 《Biochemistry》1987,26(23):7418-7426
We have obtained the resonance Raman spectra of bovine rhodopsin, bathorhodopsin, and isorhodopsin for a series of isotopically labeled retinal chromophores. The specific substitutions are at retinal's protonated Schiff base moiety and include -HC = NH+-, -HC = ND+-, -H13C = NH+-, and -H13C = ND+-. Apart from the doubly labeled retinal, we find that the protonated Schiff base frequency is the same, within experimental error, for both rhodopsin and bathorhodopsin for all the substitutions measured here and elsewhere. We develop a force field that accurately fits the observed ethylenic (C = C) and protonated Schiff base stretching frequencies of rhodopsin and labeled derivatives. Using MINDO/3 quantum mechanical procedures, we investigate the response of this force field, and the ethylenic and Schiff base stretching frequencies, to the placement of charges close to retinal's Schiff base moiety. Specifically, we find that the Schiff base frequency should be measurably affected by a 3.0-4.5-A movement of a negatively charged counterion from the positively charged protonated Schiff base moiety. That there is no experimentally discernible difference in the Schiff base frequency between rhodopsin and bathorhodopsin suggests that models for the efficient conversion of light to chemical energy in the rhodopsin to bathorhodopsin photoconversion based solely on salt bridge separation of the protonated Schiff base and its counterion are probably incorrect. We discuss various alternative models and the role of electrostatics in the rhodopsin to bathorhodopsin primary process.  相似文献   

16.
This article reviews the primary reaction processes in rhodopsin, a photoreceptive pigment for twilight vision. Rhodopsin has an 11-cis retinal as the chromophore, which binds covalently with a lysine residue through a protonated Schiff base linkage. Absorption of a photon by rhodopsin initiates the primary photochemical reaction in the chromophore. Picosecond time-resolved spectroscopy of 11-cis locked rhodopsin analogs revealed that the cis-trans isomerization of the chromophore is the primary reaction in rhodopsin. Then, generation of femtosecond laser pulses in the 1990s made it possible to follow the process of isomerization in real time. Formation of photorhodopsin within 200 fsec was observed by a transient absorption (pump–probe) experiment, which also revealed that the photoisomerization in rhodopsin is a vibrationally coherent process. Femtosecond fluorescence spectroscopy directly captured excited-state dynamics of rhodopsin, so that both coherent reaction process and unreacted excited state were observed. Faster photoreaction of the chromophore in rhodopsin than that in solution implies that the protein environment facilitates the efficient isomerization process. Such contributions of the protein residues have been monitored by infrared spectroscopy of rhodopsin, bathorhodopsin, and isorhodopsin (9-cis rhodopsin) at low temperatures. The crystal structure of bovine rhodopsin recently reported will lead to better understanding of the mechanism in future.  相似文献   

17.
Vogel R  Lüdeke S  Radu I  Siebert F  Sheves M 《Biochemistry》2004,43(31):10255-10264
Meta III is an inactive intermediate thermally formed following light activation of the visual pigment rhodopsin. It is produced from the Meta I/Meta II photoproduct equilibrium of rhodopsin by a thermal isomerization of the protonated Schiff base C=N bond of Meta I, and its chromophore configuration is therefore all-trans 15-syn. In contrast to the dark state of rhodopsin, which catalyzes exclusively the cis to trans isomerization of the C11=C12 bond of its 11-cis 15-anti chromophore, Meta III does not acquire this photoreaction specificity. Instead, it allows for light-dependent syn to anti isomerization of the C15=N bond of the protonated Schiff base, yielding Meta II, and for trans to cis isomerizations of C11=C12 and C9=C10 of the retinal polyene, as shown by FTIR spectroscopy. The 11-cis and 9-cis 15-syn isomers produced by the latter two reactions are not stable, decaying on the time scale of few seconds to dark state rhodopsin and isorhodopsin by thermal C15=N isomerization, as indicated by time-resolved FTIR methods. Flash photolysis of Meta III produces therefore Meta II, dark state rhodopsin, and isorhodopsin. Under continuous illumination, the latter two (or its unstable precursors) are converted as well to Meta II by presumably two different mechanisms.  相似文献   

18.
Vogel R  Siebert F  Zhang XY  Fan G  Sheves M 《Biochemistry》2004,43(29):9457-9466
Thermal isomerization of the retinal Schiff base C=N double bond is known to trigger the decay of rhodopsin's Meta I/Meta II photoproduct equilibrium to the inactive Meta III state [Vogel, R., Siebert, F., Mathias, G., Tavan, P., Fan, G., and Sheves, M. (2003) Biochemistry 42, 9863-9874]. Previous studies have indicated that the transition to Meta III does not occur under conditions that strongly favor the active state Meta II but requires a residual amount of Meta I in the initial photoproduct equilibrium. In this study we show that the triggering event, the thermal isomerization of the protonated Schiff base, is independent of the presence of Meta II and occurs even under conditions where the transition to Meta II is completely prevented. We have examined two examples in which the transitions from Lumi to Meta I or from Meta I to Meta II are blocked. This was achieved using dry films of rhodopsin and rhodopsin reconstituted into rather rigid lipid bilayers. In both cases, the resulting fully inactive room temperature photoproducts decay specifically by thermal isomerization of the protonated Schiff base C=N double bond to an all-trans 15-syn chromophore isomer, corresponding to that of Meta III. This thermal isomerization becomes less efficient as the conformation of the respective photoproduct approaches that of Meta II and is fully absent in a pure Meta II state. These results indicate that the decay of the Meta I/Meta II photoproduct equilibrium to Meta III proceeds via Meta I and not via Meta II.  相似文献   

19.
Bovine rhodopsin and isorhodopsin were excited with a single 530-nm, 7-ps light pulse emitted by a mode-locked Nd 3+ glass laser at room temperature. Within 3 ps of excitation, absorbance changes due to formation of bathorhodopsin were observed. The difference spectra generated during and 100 ps after pulse excitation are presented. The data show that bathorhodopsin formation is completed within 3 ps for both the primary pigments and suggest that a single common bathorhodopsin is photochemically formed from both primary pigments. Our findings provide additional support for the cis-trans isomerization model of the primary event in vision. Additional absorption transients that were observed near 670 and 460 nm are discussed.  相似文献   

20.
Invertebrate opsins are unique among the visual pigments because the light-activated conformation, metarhodopsin, is stable following exposure to light in vivo. Recovery of the light-activated pigment to the dark conformation (or resting state) occurs either thermally or photochemically. There is no evidence to suggest that the chromophore becomes detached from the protein during any stage in the formation or recovery processes. Biochemical and structural studies of invertebrate opsins have been limited by the inability to express and purify rhodopsins for structure-function studies. In this study, we used Drosophila to produce an epitope-tagged opsin, Rh1-1D4, in quantities suitable for spectroscopic and photochemical characterization. When expressed in Drosophila, Rh1-1D4 is localized to the rhabdomere membranes, has the same spectral properties in vivo as wild-type Rh1, and activates the phototransduction cascade in a normal manner. Purified Rh1-1D4 visual pigment has an absorption maximum of the dark-adapted state of 474 nm, while the metarhodopsin absorption maximum is 572 nm. However, the metarhodopsin state is not stable as purified in dodecyl maltoside but decays with kinetics that require a double-exponential fit having lifetimes of 280 and 2700 s. We investigated the primary properties of the pigment at low temperature. At 70 K, the pigment undergoes a temperature-induced red shift to 486 nm. Upon illumination with 435 nm light, a photostationary state mixture is formed consisting of bathorhodopsin (lambda(max) = 545 nm) and isorhodopsin (lambda(max) = 462 nm). We also compared the spectroscopic and photochemical properties of this pigment with other vertebrate pigments. We conclude that the binding site of Drosophila rhodopsin is similar to that of bovine rhodopsin and is characterized by a protonated Schiff base chromophore stabilized via a single negatively charged counterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号