首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tissue distribution and subcellular location of branched chain aminotransferase was analyzed using polyclonal antibodies against the enzyme purified from rat heart mitochondria (BCATm). Immunoreactive proteins were visualized by immunoblotting. The antiserum recognized a 41-kDa protein in the 100,000 x g supernatant from a rat heart mitochondrial sonicate. The 41-kDa protein was always present in mitochondria which contained branched chain aminotransferase activity, skeletal muscle, kidney, stomach, and brain, but not in cytosolic fractions. In liver mitochondria, which have very low levels of branched chain aminotransferase activity, the 41-kDa protein was not present. However, two immunoreactive proteins of slightly higher molecular masses were identified. These proteins were located in hepatocytes. The 41-kDa protein was present in fetal liver mitochondria but not in liver mitochondria from 5-day neonates. Thus disappearance of the 41-kDa protein coincided with the developmental decline in liver branched chain aminotransferase activity. Two-dimensional immunoblots of isolated BCATm immunocomplexes showed that the liver immunoreactive proteins were clearly different from the heart and kidney proteins which exhibited identical immunoblots. Investigation of BCATm in subcellular fractions prepared from different skeletal muscle fiber types revealed that branched chain aminotransferase is exclusively a mitochondrial enzyme in skeletal muscles. Although total detergent-extractable branched chain aminotransferase activity was largely independent of fiber type, branched chain aminotransferase activity and BCATm protein concentration were highest in mitochondria prepared from white gastrocnemius followed by mixed skeletal muscles with lowest activity and protein concentration found in soleus mitochondria. These quantitative differences in mitochondrial branched chain aminotransferase activity and enzyme protein content suggest there may be differential expression of BCATm in different muscle fiber types.  相似文献   

2.
A cyclic AMP phosphodiesterase form of rat brain cytosol was purified by means of affinity chromatography on an immobilized analog of the specific inhibitor rolipram, followed by an exclusion chromatography step. The resulting preparation presented two protein bands in polyacrylamide gel electrophoresis, both with phosphodiesterase activity. Kinetics of cyclic AMP hydrolysis by the purified enzyme proved of the Michaelis type, with a Km of 3 microM, while hydrolysis of cyclic GMP displayed anomalous negatively cooperative kinetics. At micromolar concentrations, this enzyme from hydrolyzed highly specifically cyclic AMP (50-fold faster than cyclic GMP). Cyclic GMP proved a poor competitor of cyclic AMP hydrolysis (Ki 1.04 mM). The neurotropic compound, rolipram, strongly inhibited the enzyme, in a competitive manner (Ki 0.9 microM). This enzyme displayed a molecular mass of around 44 kDa as determined by exclusion chromatography, but two molecular masses of 42 kDa and 89 kDa were observable by electrophoresis on a polyacrylamide gradient gel, compatible with an equilibrium between dimeric and monomeric forms. Isoelectric focusing of the preparation gave rise to two activity peaks of pI 4.8 and 6.7, with identical properties, probably representing two charge isomers of the same protein. An enzyme prepared from rat heart cytosol by the same techniques as for brain phosphodiesterase isolation shared numerous characteristics with the enzyme of cerebral origin, suggesting identity of the rolipram-sensitive form between the two tissues. Since the rolipram-sensitive form detected in crude brain preparations markedly differs from the above-described isolated enzyme, both by its molecular mass in exclusion chromatography and by its pI, it is suggested that an alteration of the native protein, due to dissociation of putative subunits, occurs during the purification procedure.  相似文献   

3.
—Aromatic: 2-oxoglutarate aminotransferase has been purified about 950-fold from rat brain mitochondria. The purified enzyme was homogeneous in polyacrylamide gel electrophoresis and had a molecular weight of approx 63,000. On the basis of substrate specificity, substrate inhibition, purification ratio, yield, polyacrylamide gel electrophoresis and some other properties of the enzyme it has been suggested that brain mitochondrial tyrosine:2-oxoglutarate aminotransferase (l -tyrosine: 2-oxoglutarate aminotransferase, EC 2.6.1.5) is identical with brain mitochondrial phenylalanine and kynurenine: 2-oxoglutarate aminotransferases (l -kynurenine: 2-oxoglutarate aminotransferase, EC 2.6.1.7), and also with aspartate: 2-oxoglutarate aminotransferase (l -aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1).  相似文献   

4.
The activating enzyme of the inactive form of Fraction I of delta-aminolevulinate (ALA) synthetase [EC 2.3.1.37] in Rhodopseudomonas (R.) spheroides was purified about 1,000-fold from an extract of R. spheroides cells grown anaerobically in the light. The purification of the activating enzyme was achieved by fractionating the 100,000 X g supernatant fraction of the crude extract with ammonium sulfate and acetone, followed by Sephadex G-200 chromatography, pyridoxamine phosphate-Sepharose 4B chromatography, and preparative gel electrophoresis. The final preparation of the activating enzyme still contained a minor contaminant (less than 20%) as judged by disc gel electrophoresis. The activating enzyme exhibited cystathionase [EC 4.4.1.1] activity throughout the purification. These two enzyme activities were not separated at all during any step of the purification. An apparently homogeneous preparation of cystathionase [EC 4.4.1.8] purified from rat liver also exhibited activating activity in the presence of L-cystine. It was concluded that the activating enzyme is a cystathionase.  相似文献   

5.
Studies reported from this laboratory have demonstrated that O-glycosidic glycoproteins of salivary, pulmonary, and gastrointestinal origin are acylated by fatty acyltransferase residing in Golgi and microsome-enriched fraction (Slomiany, A., Liau, Y.H., Takagi, A., Laszewicz, W., and Slomiany, B.L. (1984) J. Biol. Chem. 259, 13304-13308). Here we report on the successful purification of this enzyme from rough microsomal membranes of rat gastric mucosa and its identification in a number of diverse tissues and organs, such as heart, liver, pancreas, lung, kidney, salivary glands, and lymphoblasts. The enzymatic activity has been released from the stripped and salt-extracted microsomes with 0.5% Triton X-100 and recovered from 100,000 x g supernatant by affinity chromatography on Cibacron blue F3GA column. The retained fatty acyltransferase protein was selectively displaced from the column with 50 microM palmitoyl-CoA. On nonreducing polyacrylamide gel electrophoresis, the enzymatic activity was associated with a 234-kDa complex, and on sodium dodecyl sulfate polyacrylamide gel electrophoresis, the complex afforded 65- and 67-kDa protein bands. Incubation of microsomes with trypsin prior to enzyme extraction resulted in a 50% inactivation of the fatty acyltransferase and generation of 53- and 55-kDa protein bands, which also had affinity to Cibacron blue F3GA and were displaced from the column together with the active (intact) enzyme. We suggest that the fatty acyltransferase is an integral rough microsomal protein partially exposed to cytosol, which catalyzes the fatty acyl-CoA-protein reaction on the cytosolic site of the rough endoplasmic reticulum and that this enzyme is responsible for processing of the group of protein which are entering rough endoplasmic reticulum-Golgi secretory pathway.  相似文献   

6.
Ovine alpha-fetoprotein was successfully isolated from fetal sheep serum by using rabbit anti-ovine alpha-fetoprotein linked to an agarose immunoadsorbent column. Antibody used in this affinity chromatography column was produced by immunizing a rabbit with highly purified alpha-fetoprotein-antibody complex to yield a monospecific antiserum to ovine alpha-fetoprotein. Following affinity chromatography, alpha-fetoprotein was further purified by preparative polyacrylamide disc gel electrophoresis ultimately yielding a 105-fold purification. The purified alpha-fetoprotein was homogeneous on analytical polyacrylamide disc gel electrophoresis. Ovine alpha-fetoprotein was found to be immunochemically related to human alpha-fetoprotein and to exhibit a molecular weight and amino acid composition similar to other mammalian alpha-fetoproteins.  相似文献   

7.
Release of Endogenous Amino Acids from Striatal Neurons in Primary Culture   总被引:7,自引:7,他引:0  
Following partial purification, the characteristics of a cytosol protein kinase were investigated. The protein kinase was purified by ammonium sulfate precipitation and diethylaminoethyl-cellulose, ATP-agarose, and hydroxyapatite chromatography. Analysis of the purified protein kinase preparation by polyacrylamide gel electrophoresis revealed three major protein bands. The cytosol protein kinase was purified approximately 442-fold, as calculated from the cyclic nucleotide independent protein kinase activity in the 40,000 g supernatant. The activity of the kinase was found to be independent of either cyclic AMP or cyclic GMP. Moreover, the kinase activity was unaffected by the addition of the endogenous protein kinase inhibitor, or the regulatory subunit from the type II cyclic AMP-dependent protein kinase from bovine heart. The molecular weight of the enzyme was determined to be 95,000 by Sephadex G-200 gel filtration. The activity of the kinase was increased approximately twofold in the presence of 10 microM Ca+2 and calmodulin. This increase was reversed by the addition of EGTA. The subcellular distribution of the protein kinase was also examined. The soluble fraction from nerve terminal was found to have the highest concentration of the kinase activity.  相似文献   

8.
Purification and some properties of ornithine decarboxylase from rat liver   总被引:1,自引:0,他引:1  
Ornithine decarboxylase (EC 4.1.1.17) was purified to near homogeniety from livers of thioacetamide- and dl-α-hydrazino-δ-aminovaleric acid-treated rats by using three types of affinity chromatography with pyridoxamine phosphate-Sepharose, pyridoxamine phosphate-dipropylenetriamine-Sepharose and heparin-Sepharose. This procedure gave a purification of about 3.5·105-fold with an 8% yield; the specific activity of the final enzyme preparation was 1,1·106 nmol CO2/h per mg protein. The purified enzyme gave a single band of protein which coincided with activity peak on polyacrylamide gel electrophoresis and also gave a single major band on SDS-polyacrylamide gel electrophoresis. A single precipitin line was formed between the purified enzyme and an antiserum raised against a partially purified enzyme, on Ouchterlony immunodiffusion. The molecular weight of the enzyme was estimated to be 105 000 by polyacrylamide gel electrophoresis at several different gel concentrations; the dissociated subunits had molecular weights of 50 000 on SDS-polyacrylmide gels. The isoelectric point of the enzyme was pH 4.1.  相似文献   

9.
alpha-L-Iduronidase was purified about 100,000-fold from pig liver by employing column chromatography on cellulose phosphate (P11), concanavalin A-Sepharose 4B, heparin-Sepharose 4B, Toyopearl HW-55, Sephadex G-100 and chelating Sepharose 6B charged with cupric ions. The molecular mass of the purified enzyme was estimated to be 70 kDa by Sephadex G-100 column chromatography. The purified enzyme gave a single band on disc polyacrylamide gel electrophoresis without using sodium dodecyl sulfate. However, two separate components of 70 kDa and 62 kDa appeared when it was analyzed by SDS/polyacrylamide gel electrophoresis. These 70-kDa and 62-kDa components were confirmed as alpha-L-iduronidase immunochemically. The isoelectric points of these enzymes were both 9.1 as measured by isoelectric focusing in a polyacrylamide gel containing ampholine and sucrose. The optimal pH and Km values were 3.0-3.5 and 65 microM 4-methylumbelliferyl-alpha-L-iduronide, respectively. The purified enzyme was stable in the pH range 3.5-6.0 under conditions with or without 0.5 M NaCl. However, in the presence of 0.5 M NaCl, it was unstable at pH 3.0. Moreover, it was conversely stabilized at pH 7.0 in the presence of 0.5 M NaCl. Immunohistochemically, the enzyme was found in the Kupffer cells and was abundant on their lysosomal membranes. In liver cells, however, the immunohistochemical reaction was weak.  相似文献   

10.
The phosphate transport protein was purified from rat liver mitochondria by extraction in an 8% (v/v) Triton X-100 buffer followed by adsorption chromatography on hydroxyapatite and Celite. SDS/polyacrylamide-gel electrophoresis (10%, w/v) demonstrated that the purified polypeptide was apparently homogeneous when stained with Coomassie Blue and had a subunit Mr of 34,000. However, lectin overlay analysis of this gel with 125I-labelled concanavalin A demonstrated the presence of several low- and high-Mr glycoprotein contaminants. To overcome this problem, mitochondria were pre-extracted with a 0.5% (v/v) Triton X-100 buffer as an additional step in the purification of phosphate transport protein. SDS/polyacrylamide gradient gel electrophoresis (14-20%, w/v) of the hydroxyapatite and Celite eluates revealed one major band of Mr 34,000 when stained with Coomassie Blue. The known thiol group sensitivity of the phosphate transporter was employed to characterize the isolated polypeptide further. Labelling studies with N-[2-3H]ethylmaleimide showed that only the 34,000-Mr band was labelled in both the hydroxyapatite and Celite fractions, when purified from rat liver mitochondria. Further confirmation of its identity has been provided with an antiserum directed against the 34,000-Mr protein. Specific partial inhibition of phosphate uptake, as measured by iso-osmotic swelling in the presence of (NH4)2HPO4, was achieved when mitoplasts (mitochondria minus outer membrane) were incubated with this antiserum. Finally, amino acid analysis of the rat liver mitochondrial phosphate/hydroxyl ion antiport protein indicates that it is similar in composition to the equivalent protein isolated from ox heart.  相似文献   

11.
53-fold purified creatine kinase is isolated from beef heart mitochondria by phosphate buffer extraction followed by chromatography on DEAE-cellulose and KM-cellulose and preparative electrophoresis in phosphate buffer density gradient. The purified enzyme was homogenous under electrophoresis in agarose gel and moved to cathode. The enzyme did not enter into separating gel under disc electrophoresis in conditions for the separation of neutral anc acid proteins, while under conditions for separating alkaline proteins it produced five fractions. The stability of creatine kinase under storage considerably decreased after the purification.  相似文献   

12.
We have identified a 56-kDa fatty acid binding protein in rat renal basolateral membrane and purified it by extraction in nonionic detergent (Triton X-100), followed by gel filtration, DEAE-cellulose chromatography, and affinity chromatography. The purified protein was homogeneous on polyacrylamide gel electrophoresis in the presence of Triton X-100 or SDS. It showed amphiphilic properties on gel filtration, polyacrylamide gel electrophoresis, and oleate-Sepharose 4B chromatography. Its molecular mass was estimated to be 56 kDa by SDS-polyacrylamide gel electrophoresis. The protein showed optimal binding activity at pH 7.5 and 37 degrees C. The apparent Kd for palmitic acid was 0.79 microM. It was immunologically clearly distinct from renal cytosolic fatty acid binding protein.  相似文献   

13.
Hydroxylapatite chromatography of Triton-extracted inner-membrane proteins from rat liver mitochondria allowed a ten-fold purification of the dicarboxylate carrier. The purified system, reconstituted into liposomes, displayed all the properties of the dicarboxylate carrier and mediated malonate-malate and malonate-phosphate exchanges. Six protein bands of Mr ranging from 27,000 to 34,000 could be resolved by sodium dodecylsulfate-polyacrylamide gel electrophoresis. The purification of the dicarboxylate carriers of liver, kidney and heart mitochondria were carried out by this method and their properties were compared with respect to transport activity and electrophoresis patterns. Our results demonstrate that the dicarboxylate carrier of rat mitochondria can be obtained in an advanced state of purification and with a high specific activity.  相似文献   

14.
Saccharomyces lactis strain Y-123, a constitutive high producer of beta-glucosidase (B(h)), was grown in an enriched medium. beta-Glucosidase, extracted most easily by cell autolysis, was purified by successive ammonium sulfate precipitation, ethyl alcohol precipitation, gel filtration, calcium phosphate gel adsorption-elution, and hydroxyapatite column chromatography. The specific activity of the enzyme increased 200-fold during the purification. The electrophoretic and catalytic properties of the enzyme did not change during the procedure. Polyacrylamide gel disc electrophoresis of the partially purified enzyme revealed one major and several minor protein-staining bands. beta-Glucosidase activity in the polyacrylamide gel columns was measured directly by assaying sections of columns frozen and sliced immediately after electrophoresis. Most of the activity coincided with the major protein-staining band. Prolonged assay produced minor activity coinciding with the less intense protein bands. Properties of the enzyme suggest that it is a single, unconjugated, intracellular, high molecular weight protein. The purification procedure is applicable to strains of S. lactis which possess alleles of the B locus for beta-glucosidase synthesis.  相似文献   

15.
A major isoenzyme of hepatic androsterone-sulfating sulfotransferase (AD-ST) was purified from adult female rats. The activity was purified 122-fold over that found in the cytosol and showed a single protein band with a subunit molecular mass of 30 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme exhibited four isoelectric variants of subunits on denaturing isoelectrofocusing gels (pI = 5.8, 6.1, 6.7 and 7.2). Rabbit antiserum raised against the enzyme specifically detected AD-ST polypeptide in rat liver cytosol. Immunoblot analysis of liver cytosol from female and male rats at various ages showed good correlation between the levels of AD-ST activity and AD-ST polypeptide. Significant levels of AD-ST activity and polypeptide were detected in senescent male rats, though normal adult male rats have very low levels of AD-ST activity and protein. The relative content of the isoelectric variants of AD-ST were different in liver cytosol of weanling and adult females, indicating that age- and gender-related alterations of hepatic AD-ST activity are primarily determined by the levels of AD-ST polypeptide and the relative amounts of the four isoelectric variants of the enzyme.  相似文献   

16.
Protein tyrosine kinase was purified extensively from a 30,000 X g particulate fraction of bovine spleen by a procedure involving four column chromatographies: DEAE-Sepharose, polyamino acids affinity, hydroxylapatite, and Sephacryl S-200 molecular sieving. The purification resulted in more than 3,000-fold enrichment in [Val5]angiotensin II phosphorylation activity (specific activity 202 nmol/min/mg). All column chromatography profiles showed single protein tyrosine kinase activity peaks with the exception of that of affinity chromatography, where about 50% of the enzyme activity appeared with the breakthrough fraction; only the bound enzyme was further purified. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of a purified sample phosphorylated in the presence of [gamma-32P]ATP revealed the presence of a single phosphorylated polypeptide of molecular weight 50,000 which represents about 40% of total protein. Analysis by polyacrylamide gel electrophoresis under nondenaturing conditions showed that protein tyrosine kinase activity co-migrated with the phosphoprotein. Stoichiometry of the phosphorylation of the 50-kDa polypeptide was found to be 1.0 mol/mol. The purified sample did not appear to contain phosphotyrosine protein phosphatase activity. Both casein and histone could be phosphorylated by the purified sample, and the phosphorylation occurred only at tyrosine residue, suggesting that there was no protein serine and threonine kinase contamination.  相似文献   

17.
5 alpha-Dihydrotestosterone 3 alpha(beta)-hydroxysteroid dehydrogenase [3 alpha(beta)-HSDH] [EC 1.1.1.50/EC 1.1.1.51] which catalyses the conversion of 5 alpha-dihydrotestosterone (5 alpha-DHT) to both 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol was purified to an apparent homogeneous state using cytosol of three human hyperplastic prostates by a 4-step purification procedure. After each purification step 3 alpha-HSDH activity was coincident with 3 beta-HSDH activity. On average, specific 3 alpha-HSDH activity was enriched 856-fold, specific 3 beta-HSDH activity 749-fold compared to human prostatic cytosol using anion exchange, hydrophobic interaction, gel filtration and affinity chromatography. Examination of the purified enzyme by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) revealed a single protein band with silver staining. The molecular weight of the enzyme was estimated as 33 kDa by SDS-polyacrylamide gel electrophoresis and as 28 kDa by Sephacryl S-200 gel filtration indicating that the native 3 alpha(beta)-HSDH is a monomer. In the presence of the preferred co-factor, NADPH, the purified enzyme had a mean apparent Km for 5 alpha-DHT of 3.9 microM and a Vmax of 93.3 nmol (mg protein)-1 h-1 with regard to 3 alpha-HSDH activity, and a Km of 6.3 microM and a Vmax of 20.6 nmol (mg protein)-1 h-1 with regard to 3 beta-HSDH activity.  相似文献   

18.
The enzyme procollagen C-proteinase removes the carboxy-terminal propeptide from procollagen. In the present study we describe an improved procedure for the purification of this enzyme. From the medium of cultured mouse fibroblasts, consisting of ammonium sulfate precipitation, gel filtration and affinity chromatography on a lysyl-Sepharose column, followed by chromatography on a column of Sepharose coupled to the carboxy-terminal propeptide of type I procollagen (PP-Sepharose). This procedure yielded a practically homogeneous, 18,500-fold-purified enzyme preparation and the molecular mass of the purified C-proteinase as determined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis was 80 kDa. The lysyl-Sepharose step separated the enzyme from the majority of the contaminating proteins, including a 55-kDa protein which was further purified by PP-Sepharose chromatography and identified as an additional form of the 36-kDa and 34-kDa procollagen C-proteinase enhancer proteins described before [Adar et al. (1986) Collagen Relat. Res. 6,267-277]. It enhanced the C-proteinase activity, bound to the carboxyl propeptide of type I procollagen, cross-reacted immunologically with the 36-kDa as well as the 34-kDa enhancer proteins, and in common with the latter proteins, it was glycosylated. In the course of PP-Sepharose chromatography, a large proportion of the 55-kDa protein disappeared with the concomitant appearance of the smaller enhancer proteins. All these findings suggest that the 55-kDa protein is a precursor of the low molecular mass enhancer proteins. Also suggested from this study is that lysyl-Sepharose chromatography is a highly beneficial purification step which may find use in the purification of the C-proteinase from other sources as well.  相似文献   

19.
Purification of hepoxilin epoxide hydrolase from rat liver   总被引:3,自引:0,他引:3  
Hepoxilin epoxide hydrolase activity was demonstrated in rat liver cytosol using as substrate [1-14C] hepoxilin A3, a recently described hydroxy epoxide derivative of arachidonic acid. The enzyme was isolated and purified to apparent homogeneity using conventional chromatographic procedures resulting in 41-fold purification. The protein eluted during isoelectric focusing at a pI in the 5.3-5.4 range. The specific activity of the purified protein was 1.2 ng/microgram protein/20 min at 37 degrees C. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, under denaturing conditions, a molecular mass value of 53 kDa was observed. Using native polyacrylamide gel electrophoresis, enzyme activity corresponded to the main protein band. The purified protein used hepoxilin A3 as preferred substrate converting it to trioxilin A3. The enzyme was marginally active toward other epoxides such as leukotriene A4 and styrene oxide. The Mr, pI, and substrate specificity of the hepoxilin epoxide hydrolase indicate that this enzyme is different from the recently reported leukotriene A4 hydrolase from human erythrocytes and rat and human neutrophils and constitutes a hitherto undescribed form of epoxide hydrolase with specificity toward hepoxilin A3. Tissue screening for enzyme activity revealed that this enzyme is ubiquitous in the rat.  相似文献   

20.
Liver mitochondrial and microsomal DT-diaphorase have been purified from 3-methylcholanthrene-treated rats. A 1150-fold and 3500-fold purification of mitochondrial and microsomal DT-diaphorase, respectively, is achieved after solubilization of the membranes with deoxycholate followed by affinity chromatography on azodicoumarol Sepharose 6B and subsequent gel filtration on Sephadex G-100. From this purification procedure, 65–70% of mitochondrial DT-diaphorase is recovered and the purified enzyme has a specific activity comparable to that of cytosolic DT-diaphorase; i.e., 50.4 kat/kg protein. Microsomal DT-diaphorase is obtained with a yield of 45% and a specific activity of 15.5 kat/kg protein.Purified mitochondrial DT-diaphorase exhibits an absorption spectrum characteristic of a flavoprotein and very similar to that of the cytosolic enzyme. Purification of both mitochondrial and microsomal DT-diaphorase results in fractions enriched in a polypeptide with a molecular weight of 28,000 which comigrates with purified cytosolic DT-diaphorase on SDS-polyacrylamide gel electrophoresis. Employing antiserum raised against cytosolic DT-diaphorase, immunological identity between DT-diaphorase isolated from the three cell fractions is observed with both the Ouchterlony immunodiffusion technique and fused rocket immunoelectrophoresis. The latter method also reveals that DT-diaphorase isolated from mitochondria and microsomes contains several antigenic forms identical to those observed in purified cytosolic DT-diaphorase. Furthermore, this antiserum inhibits DT-diaphorase to about the same extent whether the enzyme is isolated from mitochondria, microsomes, or cytosol. In addition, this antiserum efficiently inhibits membrane-bound microsomal DT-diaphorase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号