首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Flow cytometry analysis of recombinant Saccharomyces cerevisiae populations   总被引:4,自引:0,他引:4  
A new fluorescent stain has been developed for detecting cloned beta-galactosidase activity in individual cells of Saccharomyces cerevisiae by flow cytometry. The staining reaction is based on enzymatic cleavage of alpha-naphthol-beta-D-galactopyranoside by intracellular beta-galactosidase and trapping of the liberated naphthol by hexazoniumpararosaniline yielding a fluorescent, insoluble end product. This stain, in connection with an appropriate host strain, has been applied for detecting plasmids encoding inducible beta-galactosidase in unstable recombinant cell populations carrying plasmids with different origins of replication. The method enables rapid determination of the fraction of plasmid-containing cells as well as quantitation of intracellular beta-galactosidase content by kinetic enzyme assay. Inducibility of the marker enzyme is important for maintaining correlation between enzyme and gene content.  相似文献   

3.
A Real-Time PCR method was developed to monitor the plasmid copy number (PCN) in Escherichia coli and Chinese hamster ovary (CHO) cells. E. coli was transformed with plasmids containing a ColE1 or p15A origin of replication and CHO cells were transfected with a ColE1 derived plasmid used in DNA vaccination and carrying the green fluorescent protein (GFP) reporter gene. The procedure requires neither specific cell lysis nor DNA purification and can be performed in <30 min with dynamic ranges covering 0.9 pg–55 ng, and 5.0 pg–2.5 ng of plasmid DNA (pDNA) for E. coli and CHO cells, respectively. Analysis of PCN in E. coli batch cultures revealed that the maximum copy number per cell is attained in mid-exponential phase and that this number decreases on average 80% towards the end of cultivation for both types of plasmids. The plasmid content of CHO cells determined 24 h post-transfection was around 3 × 104 copies per cell although only 37% of the cells expressed GFP one day after transfection. The half-life of pDNA was 20 h and around 100 copies/cell were still detected 6 days after transfection.  相似文献   

4.
Transfection with polyethylenimine (PEI) was evaluated as a method for the generation of recombinant Chinese hamster ovary (CHO DG44) cell lines by direct comparison with calcium phosphate-DNA coprecipitation (CaPO4) using both green fluorescent protein (GFP) and a monoclonal antibody as reporter proteins. Following transfection with a GFP expression vector, the proportion of GFP-positive cells as determined by flow cytometry was fourfold higher for the PEI transfection as compared to the CaPO4 transfection. However, the mean level of transient GFP expression for the cells with the highest level of fluorescence was twofold greater for the CaPO4 transfection. Fluorescence in situ hybridization on metaphase chromosomes from pools of cells grown under selective pressure demonstrated that plasmid integration always occurred at a single site regardless of the transfection method. Importantly, the copy number of integrated plasmids was measurably higher in cells transfected with CaPO4. The efficiency of recombinant cell line recovery under selective pressure was fivefold higher following PEI transfection, but the average specific productivity of a recombinant antibody was about twofold higher for the CaPO4-derived cell lines. Nevertheless, no difference between the two transfection methods was observed in terms of the stability of protein production. These results demonstrated the feasibility of generating recombinant CHO-derived cell lines by PEI transfection. However, this method appeared inferior to CaPO4 transfection with regard to the specific productivity of the recovered cell lines.  相似文献   

5.
The purpose of this research was to develop and characterize a gene delivery vehicle with a poly(ethylene glycol) (PEG) backbone with the aim of overcoming limitations, such as cytotoxicity and rapid clearance, associated with current commonly used non-viral carriers. PEG was functionalized with DNA-binding peptides (DBPs) to make a vehicle (DBP-PEG) capable of condensing DNA. Complexes of plasmid DNA and DBP-PEG were formed and characterized by measuring particle size, zeta potential, and transfection efficiency as a function of N:P charge ratios (DBP-PEG amino groups:DNA phosphate). Dynamic light scattering showed that DBP-PEG was able to condense DNA efficiently resulting in a population of particles in the range of 250-300 nm. Neutral or slightly positive zeta potentials were measured for charge ratios of 3.5:1 and greater. DBP-PEG/DNA complexes, made with plasmids encoding the green fluorescent protein (GFP) and beta-Galactosidase (beta-Gal) genes, were used to transfect Chinese hamster ovary (CHO) cells. DBP-PEG/DNA was capable of transfecting cells and maximum transfection efficiency was observed for N:P ratios from 4:1 to 5:1, corresponding to zeta potentials from -4 to +1.6 mV. The effect of the DBP-PEG vehicle on cell viability was assayed. DBP-PEG was associated with a higher percentage of viable cells ( approximately 95%) than either polyethylenimine (PEI) or poly-L-lysine (PLL), and with transfection efficiency greater than PLL, but with somewhat lower than PEI. The results of this work demonstrate that PEG can be used as the backbone for gene delivery vehicles.  相似文献   

6.
* Protein delivery across cellular membranes or compartments is primarily limited by low biomembrane permeability. * Many protein transduction domains (PTDs) have previously been generated, and covalently cross-linked with cargoes for cellular internalization. * An arginine-rich intracellular delivery (AID) peptide could rapidly deliver fluorescent proteins or beta-galactosidase enzyme into plant and animal cells in a noncovalent fashion. The possible mechanism of this noncovalent protein transduction (NPT) may involve macropinocytosis. * The NPT via a nontoxic AID peptide provides a powerful tool characterized by its simplicity and quickness to have active proteins function in living cells in vivo. This should be of broad utility for functional enzyme assays and protein therapies in both plant biology research as well as biomedical applications.  相似文献   

7.
Erythropoietin (Epo) activates a voltage-independent Ca2+ channel that is dependent on tyrosine phosphorylation. To identify the domain(s) of the Epo receptor (Epo-R) required for Epo-induced Ca2+ influx, Chinese hamster ovary (CHO) cells were transfected with wild-type or mutant Epo receptors subcloned into pTracer-cytomegalovirus vector. This vector contains an SV40 early promoter, which drives expression of the green fluorescent protein (GFP) gene, and a cytomegalovirus immediate-early promoter driving expression of the Epo-R. Successful transfection was verified in single cells by detection of GFP, and intracellular Ca2+ ([Ca]i) changes were simultaneously monitored with rhod-2. Transfection of CHO cells with pTracer encoding wild-type Epo-R, but not pTracer alone, resulted in an Epo-induced [Ca]i increase that was abolished in cells transfected with Epo-R F8 (all eight cytoplasmic tyrosines substituted). Transfection with carboxyl-terminal deletion mutants indicated that removal of the terminal four tyrosine phosphorylation sites, but not the tyrosine at position 479, abolished Epo-induced [Ca]i increase, suggesting that tyrosines at positions 443, 460, and/or 464 are important. In CHO cells transfected with mutant Epo-R in which phenylalanine was substituted for individual tyrosines, a significant increase in [Ca]i was observed with mutants Epo-R Y443F and Epo-R Y464F. The rise in [Ca]i was abolished in cells transfected with Epo-R Y460F. Results were confirmed with CHO cells transfected with plasmids expressing Epo-R mutants in which individual tyrosines were added back to Epo-R F8 and in stably transfected Ba/F3 cells. These results demonstrate a critical role for the Epo-R cytoplasmic tyrosine 460 in Epo-stimulated Ca2+ influx.  相似文献   

8.
9.
To transfect cells, cationic polymers as well as cationic liposomes are widely investigated as carriers for both oligonucleotides and plasmid DNA. A major step in the successful intracellular delivery of the DNA is the release from its carrier. In this study, dual color fluorescence fluctuation spectroscopy (dual color FFS) was explored in order to characterize the intracellular dissociation of cationic polymer/oligonucleotide complexes. As a model, rhodamine green-labeled oligonucleotides (RhGr-ONs) were complexed with Cy5-labeled polymers of either high molar mass (Cy5-graft-pDMAEMA, 1700 kDa) or low molar mass [Cy5-poly(l-lysine), Cy5-pLL, 30 kDa]. The FFS results were compared with confocal laser scanning microscopy (CLSM) observations. CLSM proved that Cy5-graft-pDMAEMA/RhGr-ON complexes endocytosed by Vero cells dissociate in the cytoplasm: the polymer was only detected in the cytoplasm whereas the (released) RhGr-ONs accumulated in the nucleus. Transfecting Vero cells with Cy5-pLL/RhGr-ON complexes resulted, however, in colocalization of polymer and oligonucleotides in the nucleus. In the latter case, CLSM was not able to prove whether intact Cy5-pLL/RhGr-ON complexes were present in the nucleus or whether both components were located together in the nucleus without being associated. Dual color FFS, which monitors the movement of (dual labeled) fluorescent molecules, was able to answer this question. As a Cy5-pLL/RhGr-ON complex is multimolecular, i.e., it consists of many RhGr-ONs associated with many Cy5-pLL chains, it is both highly green and red fluorescent. Consequently, when Cy5-pLL/RhGr-ON complexes move through the excitation volume, the (green and red) detectors of the FFS instrument detect simultaneously a strong green and red fluorescence peak. Upon transfecting the Vero cells with Cy5-pLL/RhGr-ON complexes, FFS was indeed able to detect simultaneously green and red fluorescence peaks in the cytoplasm but never in the nucleus. From these results we conclude that the Cy5-pLL and RhGr-ONs present in the nucleus after transfection were not associated.  相似文献   

10.
A flow cytometric method was developed for the assay of beta-galactosidase in single Escherichia coli cells. A new fluorogenic substrate for beta-galactosidase, C(12)FDG, contains a lipophilic group that allows the substrate to penetrate through cell membranes under normal conditions. When the substrate is hydrolyzed by intracellular beta-galactosidase, a green fluorescent product is formed and retained inside the cell. Consequently, the stained beta-galactosidase-positive cells exhibit fluorescence, which is detected by flow cytometry. This new assay was used to analyze the segregational instability caused by a reduction in specific growth rate of the plasmid-bearing cells in the T7 expression system. Induction results in a substantial accumulation of intracellular beta-galactosidase along with a rapid increase in the fraction of plasmid-free cells. Once the cells lose the plasmid, they no longer produce beta-galactosidase, which is reduced by at least half every generation; thus, after staining, the fluorescent, plasmid-bearing cells can be distinguished from the nonfluorescent, plasmid-free cells using flow cytometry. This article describes the feasibility of the flow cytometric assay for single E. coli cells and reports the optimal assay conditions. A direct relationship between beta-galactosidase activity and green fluorescence intensity was found, and the fractions of recombinant cells in batch cultures were analyzed after various levels of induction.  相似文献   

11.
T Robson  A Hall  H Lohrer 《Mutation research》1992,274(3):177-185
The elevation of intracellular levels of metallothionein has been associated with the development of resistance to the cytotoxic effects of some alkylating agents. In order to study the mechanisms underlying metallothionein associated drug resistance we transfected the alkylating agent sensitive CHO cell line MMC-1 (Robson et al., 1985) with an episomally replicating plasmid coding for the human metallothionein II-A gene. Two transfectants were isolated which carried about 10 copies of the plasmid. The basal expression of metallothionein was increased from undetectable levels in the recipient cell line MMC-1 to between 22 and 26 micrograms metallothionein per 10(7) cells in the transfectants. Treatment with cadmium salts increased metallothionein levels a further 1.7-fold. Cytotoxicity assays revealed that MTII-A transfection increased the sensitivity of the parental MMC-1 cells to N-methyl-N'-nitro-N-nitrosoguanidine and N-nitroso-N-methylurea. These results suggest that metallothionein does not act as a simple scavenger of alkylating agents, but interacts with unknown factor(s) in host cells.  相似文献   

12.
The efficient transfection of cloned genes into mammalian cells system plays a critical role in the production of large quantities of recombinant proteins (r-proteins). In order to establish a simple and scaleable transient protein production system, we have used a cationic lipid-based transfection reagent-FreeStyle MAX to study transient transfection in serum-free suspension human embryonic kidney (HEK) 293 and Chinese hamster ovary (CHO) cells. We used quantification of green fluorescent protein (GFP) to monitor transfection efficiency and expression of a cloned human IgG antibody to monitor r-protein production. Parameters including transfection reagent concentration, DNA concentration, the time of complex formation, and the cell density at the time of transfection were analyzed and optimized. About 70% GFP-positive cells and 50-80 mg/l of secreted IgG antibody were obtained in both HEK-293 and CHO cells under optimal conditions. Scale-up of the transfection system to 1 l resulted in similar transfection efficiency and protein production. In addition, we evaluated production of therapeutic proteins such as human erythropoietin and human blood coagulation factor IX in both HEK-293 and CHO cells. Our results showed that the higher quantity of protein production was obtained by using optimal transient transfection conditions in serum-free adapted suspension mammalian cells.  相似文献   

13.
The endocytosis of transferrin receptor (TfR) has served as a model to study the receptor-targeted cargo delivery system for cancer therapy for many years. To accurately evaluate and optically measure this TfR targeting delivery in vitro, a CHO cell line with enhanced green fluorescent protein (EGFP)-tagged human TfR was established. A chimera of the hTfR and EGFP was engineered by fusing EGFP to the amino terminus of hTfR. Data were provided to demonstrate that hTfR-EGFP chimera was predominantly localized on the plasma membrane with some intracellular fluorescent structures on CHO cells and the EGFP moiety did not affect the endocytosis property of hTfR. Receptor internalization occurred similarly to that of HepG2 cells expressing wild-type hTfR. The internalization percentage of this chimeric receptor was about 81±3% of wild type. Time-dependent co-localization of hTfR-EGFP and PE-conjugated anti-hTfR mAb in living cells demonstrated the trafficking of mAb-receptor complexes through the endosomes followed by segregation of part of the mAb and receptor at the late stages of endocytosis. The CHO-hTfR cells preferentially took up anti-hTfR mAb conjugated nanoparticles. This CHO-hTfR cell line makes it feasible for accurate evaluation and visualization of intracellular trafficking of therapeutic agents conjugated with transferrin or Abs targeting the hTfRs.  相似文献   

14.
Dendritic and tumor cells are fused to produce hybridoma cells, which are considered to be used as cellular vaccines to treat cancer. Previous strategies for hybridoma cell production were based on the quantification of the electrofusion yield by labeling the cytoplasm of both parental cell types. However, a better physiological strategy would be to label subcellular structures related directly to the antigen presentation process. Therefore, we here electrofused the same amount of CHO cells stained with red and green fluorescent dextrans and have monitored the yield of hybridoma cell formation by measuring the fusion of red and green late endocytic organelles that are involved in antigen presentation. By using confocal microscopy, the level of fused, fluorescently labelled late endocytic compartments in a single hybridoma cell was determined. The results demonstrate that organellar fusion occurs in hybridomas, which is time- and temperature-dependent. This approach therefore provides a new method for the hybridoma cell vaccine evaluation, which is based on the intracellular physiological mechanism of antigen presentation.  相似文献   

15.
Monitoring lysosomal fusion in electrofused hybridoma cells   总被引:1,自引:0,他引:1  
Dendritic and tumor cells are fused to produce hybridoma cells, which are considered to be used as cellular vaccines to treat cancer. Previous strategies for hybridoma cell production were based on the quantification of the electrofusion yield by labeling the cytoplasm of both parental cell types. However, a better physiological strategy would be to label subcellular structures related directly to the antigen presentation process. Therefore, we here electrofused the same amount of CHO cells stained with red and green fluorescent dextrans and have monitored the yield of hybridoma cell formation by measuring the fusion of red and green late endocytic organelles that are involved in antigen presentation. By using confocal microscopy, the level of fused, fluorescently labelled late endocytic compartments in a single hybridoma cell was determined. The results demonstrate that organellar fusion occurs in hybridomas, which is time- and temperature-dependent. This approach therefore provides a new method for the hybridoma cell vaccine evaluation, which is based on the intracellular physiological mechanism of antigen presentation.  相似文献   

16.
The goals of this study were to identify mammalian cell lines which could be efficiently transiently-transfected and scaled-up for protein production. The transfection efficiencies of eight cell lines (NSO, NSO-TAg, CV-1, COS-7, CHO, CHO-TAg, HEK 293, and 293-EBNA) were measured using electroporation for DNA delivery and green fluorescent protein (Evans, 1996) as the reporter gene. In addition, we have evaluated the effects of stable expression of viral proteins, cell cycle manipulation, and butyrate post-treatment in small scale experiments. The cell lines varied widely in their GFP transfection efficiencies. Stable expression of simian virus 40 large T-antigen or Epstein Barr nuclear antigen failed to significantly increase transfection efficiency above that seen in the parental lines. Aphidicolin (a DNA polymerase inhibitor), which blocked cells from S or G2/M, brought about an increase in transfection efficiency in two cell lines. The primary effect of butyrate (a histone deacetylase inhibitor) post-treatment was an increased intensity of the fluorescent signal of green fluorescent protein, as measured by flow cytometry (1.0 to 4.2-fold, depending on the cell line). The combined use of aphidicolin pretreatment followed by butyrate treatment post- electroporation yielded increases in fluorescence intensities ranging from 0.9 to 6.8-fold. Based on their high transfection efficiencies in small scale experiments, rapid growth, and ability to grow in suspension culture, CHO, CHO-TAg, and 293-EBNA were selected to assess the feasibility of using flow electroporation for large-scale transfections. Using secreted placental alkaline phosphatase as a reporter, 293-EBNA cells produced the highest protein levels in both the presence and absence of butyrate. These data indicate that flow electroporation provides an efficient method of DNA delivery into large numbers of cells for mammalian protein production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
In this study, dimerized siRNAs linked by a cleavable disulfide bond were synthesized for efficient intracellular delivery and gene silencing. The reducible dimerized siRNAs showed far enhanced complexation behaviors with cationic polymers as compared to monomeric siRNA at the same N/P ratio, as demonstrated by microscopic techniques and gel characterization. Dimerized siRNAs targeting green fluorescent protein (GFP) or vascular endothelial growth factor (VEGF) were complexed with linear polyethylenimine (LPEI), and treated to various cell lines to examine gene transfection efficiencies. In comparison to monomer siRNA/LPEI complexes, dimeric siRNA/LPEI complexes showed greatly enhanced cellular uptake and gene silencing effects in vitro. These results were mainly due to the higher charge density and promoted chain flexibility of the dimerized siRNAs, providing more compact and stable siRNA complexes. In addition, the conjugation strategy of reducible siRNA dimers was further extended: poly(ethylene glycol) (PEG)-modified dimerized siRNAs and heterodimers of siRNAs targeting two different genes (e.g., GFP and VEGF) were synthesized, and their gene silencing efficiencies were characterized. The dimerized siRNA complex system holds great potential for in vivo systemic gene therapy.  相似文献   

18.
Effect of headgroup structure on catonic lipid-mediated transfection was investigated with either a (i) tertiary amine, (ii) quaternary amine with a hydroxyl, or (iii) quaternary amine with mesylate as headgroups. Liposomes were formulated using cholesterol or dioleoyl phosphatidyl ethanolamine (DOPE) as colipids, and transfection efficiencies were determined in rapidly dividing colon carcinoma (CT 26) and rat aortic smooth muscle (RASM) cells as well as in nondividing human pancreatic islets using luciferase and green fluorescent protein expression plasmids, pcDNA3-Luc and pCMS-EGFP, respectively. Liposome/pDNA complexes were evaluated for DNA conformational state by circular dichroism (CD), DNA condensation by electrophoretic mobility shift assay (EMSA), particle size and zeta potential by laser diffraction technique, and surface morphology by transmission electron microscopy (TEM). Encouraging transfection results were obtained with the mesylate headgroup based lipid in liposome formulations with DOPE as a colipid, which were higher than the commercially available Lipofectamine formulation. We hypothesize that the additional hydrogen bonding or covalent interactions of the headgroup with the plasmid DNA, leading to higher binding affinity of the cationic lipids to pDNA, results in higher transfection. This hypothesis is supported by TEM observations where elongated complexes were observed and more lipid was seen associated with the DNA.  相似文献   

19.
Normal human epidermal keratinocytes were isolated and cultivated in serum-free medium. The expression of the integrin subunits alpha6 and beta1 indicated that a high number of keratinocytes from the stem cell system was present. These cells were transfected with complexes made of different cationic lipids and marker genes. Effectene showed a 20-fold higher transfection efficiency, compared to Lipofectin and Lipofectamine, and a similar low toxicity. The transfection protocol was optimised. A DNA/lipid ratio of 0.133 showed the highest transfection efficiency. Keratinocytes expressed the marker gene luciferase for 20 days. The maximum expression occurred after 3-4 days, where individual patches of fluorescent keratinocytes were detected. Transfected keratinocytes, cultivated at the air-liquid interface, expressed the marker gene beta-galactosidase for at least 7 weeks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号