共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
DNA sequence of the tail fiber genes 37, encoding the receptor recognizing part of the fiber, of bacteriophages T2 and K3 总被引:2,自引:0,他引:2
The DNA sequences of genes 37 of bacteriophages T2 and K3 are presented and compared with that of phage T4. The corresponding proteins constitute, as dimers, the part of the long tail fibers that recognizes the bacterial receptor. The CO2H termini of the polypeptides are located at the free ends of the fibers. Morphologically, the three phages are essentially identical, but they use different receptors. The genes from phages T4, T2 and K3 encode proteins consisting of 1026, 1341 and 1243 amino acid residues, respectively. DNA-DNA hybridizations had shown earlier that genes 37, in contrast to the gene for the major capsid protein, of a number of T-even type phages are highly polymorphic. The deduced amino acid sequences now show that this polymorphism extends to the protein primary structures. About 50 NH2-terminal residues are conserved and are probably required for binding to the adjacent protein 36. This area is followed by more or less irregularly spaced regions of non-homology, partial homology or complete homology. The heterogeneity is most prominent in a region encompassing about 600 CO2H-terminal residues of the T2 or K3 proteins. Nevertheless, the amino acid compositions of the three proteins are very similar and all are rich in glycine. It has been found that the receptor specificities of phages K3 and T2 are determined by protein 38, a polypeptide required for the efficient dimerization of protein 37 of phage T4. Proteins 38 of phages K3 and T2 are functionally interchangeable, those of T4 and T2 or K3 are not. Proteins 37 of phages K3 and T2 possess a conserved sequence of 160 CO2H-terminal residues. This area is missing in the T4 protein. This region may serve as a binding site for polypeptides 38 of phages K3 and T2. The overall picture of the protein primary structures of the three phages strongly suggests that the evolution of genes 37, which was most likely driven by selection for variations in receptor recognition specificities, has not been a steady process but has involved loss and gain of segments of DNA. 相似文献
3.
Insertion of DNA carrying ribosomal protein genes of Escherichia coli into Charon vector phages. 总被引:7,自引:0,他引:7
B G Williams F R Blattner S R Jaskunas M Nomura 《The Journal of biological chemistry》1977,252(20):7344-7354
DNA fragments from lambdaspc1 and lambdafus2, carrying ribosomal protein genes from Escherichia coli, were inserted into lambda phage vectors Charon 3 and Charon 4. Eight of the resulting clones were characterized by agarose gel electrophoresis of EcoRI digests, analytical CsCl equilibrium centrifugation, and electron micrographic analysis of heteroduplexes. In each case, the identity, order, and orientation of each cloned fragment was determined. In all, 8 of the 12 EcoRI fragments of lambdafus2 were cloned in various arrangements. In the accompanying paper, genes for 15 ribosomal and related proteins and three bacterial promoters were detected in these phages. In addition, four of the hybrid phages carried fragments of lambda-DNA including the phage origin of replication (ori), the late promoter, PR', and the cohesive ends (cos site) in both orientations. The latter phages yield a circularly permuted collection of DNA molecules. 相似文献
4.
DNA replication of single-stranded Escherichia coli DNA phages 总被引:14,自引:0,他引:14
P D Baas 《Biochimica et biophysica acta》1985,825(2):111-139
5.
Presence of DNA, encoding parts of bacteriophage tail fiber genes, in the chromosome of Escherichia coli K-12 下载免费PDF全文
The classical T-even bacteriophages recognize host cells with their long tail fibers. Gene products 35, 36, and 37 constitute the distal moiety of these fibers. The free ends of the tail fibers, which are formed by the CO2H terminus of gene product 37, possess the host range determinants. It was found that 4 out of 10 different strains of Escherichia coli K-12 contained regions of chromosomal DNA which hybridized with a probe consisting of genes 35, 36, and 37 of the T-even phage K3. From one strain this homologous DNA, which was associated with an EcoRI fragment of about 5 kilobases, was cloned into plasmid pUC8. Two independently recovered hybrid plasmids had undergone a peculiar rearrangement which resulted in the loss of about 3 kilobases of cloned DNA and a duplication of both the vector and the remaining chromosomal DNA. The mechanisms causing this duplication-deletion may be related to that of transposases. The cloned DNA was capable of recombination with phage T4 gene 36 and a phage T2 gene 37 amber mutant. DNA sequencing revealed the existence of regions of identity between the cloned DNA and genes 36 and 37 of phage T2. In addition, after growth of a derivative of phage K3 on a strain harboring T2 DNA, it was found that this phage contained the same parts of the T2 tail fiber genes which had been recovered from the bacterial chromosome. There appears to be little doubt that the phage had picked up this DNA from the host. The possibility is considered that a repertoire of parts of genes 36 and 37 of various T-even-type phages is present in their hosts, allowing the former to change their host ranges. 相似文献
6.
L R Cardon C Burge G A Schachtel B E Blaisdell S Karlin 《Nucleic acids research》1993,21(16):3875-3884
7.
Escherichia coli RecA protein catalyzes the central DNA strand-exchange step of homologous recombination, which is essential for the repair of double-stranded DNA breaks. In this reaction, RecA first polymerizes on single-stranded DNA (ssDNA) to form a right-handed helical filament with one monomer per 3 nt of ssDNA. RecA generally binds to any sequence of ssDNA but has a preference for GT-rich sequences, as found in the recombination hot spot Chi (5′-GCTGGTGG-3′). When this sequence is located within an oligonucleotide, binding of RecA is phased relative to it, with a periodicity of three nucleotides. This implies that there are three separate nucleotide-binding sites within a RecA monomer that may exhibit preferences for the four different nucleotides. Here we have used a RecA coprotease assay to further probe the ssDNA sequence specificity of E.coli RecA protein. The extent of self-cleavage of a λ repressor fragment in the presence of RecA, ADP-AlF4 and 64 different trinucleotide-repeating 15mer oligonucleotides was determined. The coprotease activity of RecA is strongly dependent on the ssDNA sequence, with TGG-repeating sequences giving by far the highest coprotease activity, and GC and AT-rich sequences the lowest. For selected trinucleotide-repeating sequences, the DNA-dependent ATPase and DNA-binding activities of RecA were also determined. The DNA-binding and coprotease activities of RecA have the same sequence dependence, which is essentially opposite to that of the ATPase activity of RecA. The implications with regard to the biological mechanism of RecA are discussed. 相似文献
8.
DNA sequence and analysis of the bet genes encoding the osmoregulatory choline—glycine betaine pathway of Escherichia coli 总被引:6,自引:0,他引:6
T. Lamark I. Kaasen M. W. Eshoo P. Falkenberg J. McDougall A. R. Strøm 《Molecular microbiology》1991,5(5):1049-1064
The sequence was determined of 6493 nucleotides encompassing the bet genes of Escherichia coli which encode the osmoregulatory choline-glycine betaine pathway. Four open reading frames were identified: betA encoding choline dehydrogenase, a flavoprotein of 61.9kDa; betB encoding betaine aldehyde dehydrogenase (52.8kDa); betT encoding a proton-motive-force-driven, high-affinity transport system for choline (75.8kDa); and betl, capable of encoding a protein of 21.8kDa, implicated as a repressor involved in choline regulation of the bet genes. Identification of the genes was supported by subcloning, physical mapping of lambda placMu53 insertions, amino acid sequence similarity, or N-terminal amino acid sequencing. The bet genes are tightly spaced, with betT located upstream of, and transcribed divergently to, the tandemly linked betIBA genes. 相似文献
9.
10.
11.
12.
Group A RNA phages consist of four genes-maturation protein, coat protein, lysis protein and replicase genes. We analyzed six plasmids containing lysis protein genes and coat protein genes of Escherichia coli group A RNA phages and compared their amino acid sequences with the known proteins of E. coli(group A), Pseudomonas aeruginosa(PP7) RNA phages and Rg-lysis protein from Qbeta phage. The size of lysis proteins was different by the groups but the coat proteins were almost the same size among phages. The phylogenetic analysis shows that the sub-groups A-I and A-II of E. coli RNA phages were clearly dispersed into two clusters. 相似文献
13.
M. Fiandt W. Szybalski F.R. Blattner S.R. Jaskunas L. Lindahl M. Nomura 《Journal of molecular biology》1976,106(3):817-835
The physical structures of the genomes of five transducing bacteriophages (λaroE, λtrkA, λspc1, λspc2, and λfus2) carrying various portions of the aroE-trkA-spc-str segment of the Escherichia coli chromosome have been determined. Two methods were used: (a) heteroduplex analysis of DNA molecules from these phages, and (b) analysis of fragments obtained from digestion of the DNA by restriction endonucleases EcoRI and HindIII. In λaroE, λtrkA, λspc1 and λspc2, whose genome lengths vary from about 75% to about 104% of the λpapa genome, the right arm of λ DNA is present, whereas various portions of the left arm have been replaced by E. coli DNA. In λfus2, however, about 93% of the λ DNA molecule is replaced by E. coli DNA, the resultant genome being 103.5 %λ units long (Figs 1 and 2). All five phages contain an identical λ-E. coli junction at 1.9 %λ units from the left λ terminus, and there is complete homology between the common portions of the inserted E. coli DNA. Since these phages were independently isolated, we believe that the genetic organization of the E. coli DNA carried by these phages probably reflects the organization of the relevant segments of the E. coli chromosome. Comparison of the physical and genetic maps of these transducing phages has allowed us to assign a physical position to the ribosomal and neighbouring genes, including those coding for the α subunit of RNA polymerase and the elongation factors G and Tu, on the bacterial DNA. 相似文献
14.
Isolation and characterization of specialized transducing lambda phages carrying ribosomal protein genes of Escherichia coli 总被引:4,自引:0,他引:4
Summary Insertion in an episome of a kanamycine-resistant element (Tn5) at the polynucleotide phosphorylase gene level, results, after transduction into a wild strain, by the loss of activities specific to polynucleotide phosphorylase. A low phosphorolytic activity is nevertheless detectable in crude extracts, but no longer in extracts slightly purified after heat treatment at 54°C. The part played by other enzymes in these activities is discussed. Bacterial growth is not affected by introduction of the mutation. 相似文献
15.
Widespread protein sequence similarities: origins of Escherichia coli genes. 总被引:2,自引:1,他引:2 下载免费PDF全文
To learn more about the evolutionary origins of Escherichia coli genes, we surveyed systematically for extended sequence similarities among the 1,264 amino acid sequences encoded by chromosomal genes of E. coli K-12 in SwissProt release 26 by using the FASTA program and imposing the following criteria: (i) alignment of segments at least 100 amino acids long and (ii) at least 20% amino acid identity. Altogether, 624 extended alignments meeting the two criteria were identified, corresponding to 577 protein sequences (45.6% of the 1,264 E. coli protein sequences) that had an extended alignment with at least one other E. coli protein sequence. To exclude alignments of questionable biological significance, we imposed a high threshold on the number of gaps allowed in each of the 624 extended alignments, giving us a subset of 464 proteins. The population of 464 alignments has the following characteristics expressed as median values of the group: 254 amino acids in the alignment, representing 86% of the length of the protein, 33% of the amino acids in the alignment being identical, and 1.1 gaps introduced per 100 amino acids of alignment. Where functions are known, nearly all pairs consist of functionally related proteins. This implies that the sequence similarity we detected has biological meaning and did not arise by chance. That a major fraction of E. coli proteins form extended alignments strongly suggests the predominance of duplication and divergence of ancestral genes in the evolution of E. coli genes. The range of degrees of similarity shows that some genes originated more recently than others. There is no evidence of genome doubling in the past, since map distances between genes of sequence-related proteins show no coherent pattern of favored separations. 相似文献
16.
Nucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli 总被引:2,自引:0,他引:2
A 3240-base-pair DNA fragment spanning the pyridine nucleotide transhydrogenase (pnt) genes of Escherichia coli has been sequenced. The sequence contains two open-reading frames, pntA and pntB of 1506 and 1386 base pairs, coding for the transhydrogenase alpha and beta subunits, respectively. The coding sequences are preceded by a promoter-like structure and are most likely co-transcribed. Each coding sequence is preceded by a Shine-Dalgarno sequence. The amino-terminal amino acid sequences were determined from the purified alpha and beta subunits of the transhydrogenase. These sequences agree with those predicted from the nucleotide sequences of the pntA and pntB genes. The predicted relative molecular masses of 53906 (alpha) and 48667 (beta) are close to the values obtained by analysis of the subunits by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Several hydrophobic regions large enough to span the cytoplasmic membrane were observed in each subunit. These results indicate that transhydrogenase is an intrinsic membrane protein. 相似文献
17.
18.
Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylases I and II 总被引:9,自引:0,他引:9
Summary The presence of polydisperse small circular DNAs in wheat cells was first confirmed by the mica-pressadsorption (MPA) method for electron microscopy. To identify their location in the cell, chloroplast and mitochondrial fractions were examined separately by the same method; small circular DNAs were scarcely found in the former but abundantly in the latter fraction, indicating their origin from mitochondria. The size varied greatly, ranging from 0.1 to 2.0 m in contour length. To verify the present finding, the same mitochondrial fraction was examined by the conventional cytochrome-spreading method by which the presence of the same size-class of circular DNAs was confirmed.To know the relationship between the small circular DNAs and cytoplasmic differentiation observed among Tritium (wheat) and Aegilops species, protoplasts isolated from seven alloplasmic lines of common wheat with different cytoplasms were examined by the MPA method. Similar polydisperse small circular DNAs, ranging from 0.1 to 2.5 m in contour length Dere found in all lines, and no clear size differences were noticed among the DNA populations from the cytoplasms of eight Triticum and Aegilops species. 相似文献
19.