首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is considerable variation in structures known to function in the transfer and storage of sperm in female decapod crustaceans. The thelycum is a secondary sexual character that forms from the posterior thoracic sterna of female shrimps (especially penaeoids and sergestoids). Females in the caridean shrimp family Processidae have a thelycum‐like structure which rarely occurs in other caridean females. We tested the hypothesis that the processid thelycum serves as a spermatheca for either short‐term attachment or long‐term sperm storage. When inseminated females of the processid Ambidexter symmetricus were isolated after mating, newly spawned and then incubated embryos hatched, but in the continued absence of a male, females were unable to fertilize a subsequent spawn. Our observations on A. symmetricus show that sperm were not retained after female spawning, and thus the thelycum is not used for long‐term sperm storage as in many penaeoids. In A. symmetricus, the thelycum may serve as an external median spermatheca (seminal receptacle) for temporary attachment and storage of a sperm mass during the 2–3 h interval between mating and spawning. Observations on mating behavior support the hypothesis of a pure‐search (promiscuous) mating system in A. symmetricus, with males showing little interest before, and copulating with females only after, the female parturial molt. Mating encounters were short (<2 min). This mating system is like that of other caridean shrimps with populations structured similarly to those in A. symmetricus: a relatively high density of mobile individuals and sexual dimorphism in body size (reproductive females larger than males) but not in cheliped weaponry (similar in males and females).  相似文献   

2.
Gotoh, A., Billen, J., Tsuji, K., Sasaki, T. and Ito, F. 2011. Histological study of the spermatheca in three thelytokous parthenogenetic ant species, Pristomyrmex punctatus, Pyramica membranifera and Monomorium triviale (Hymenoptera: Formicidae). —Acta Zoologica (Stockholm) 00 :1–8. The evolution of obligate parthenogenesis may induce the degeneration of female mating ability and subsequently affect the morphology of the female reproductive organs related to mating and/or sperm storage. Here, we investigated the size and structure of the sperm storage organ, the spermatheca, in three thelytokous parthenogenetic myrmicine ant species, Pristomyrmex punctatus, Pyramica membranifera and Monomorium triviale, and compared it with that of their related sexually reproducing species. So far, mated individuals have never been found in these three species, which appears to be in line with their parthenogenetic status. Although the spermatheca appears to be useless in these species, we could not find any evidence on the degeneration in size and morphology of their spermathecae. The spermathecal reservoir still has the columnar hilar epithelium, which is one of the major features for a functional spermatheca in ants.  相似文献   

3.
Given attention to both contraception and treatment of infertility, there is a need to identify genes and sequence variants required for mammalian fertility. Recent unbiased mutagenesis strategies have expanded horizons of genetic control of reproduction. Here we show that male mice homozygous for the ethyl‐nitroso‐urea‐induced ferf1 (fertilization failure 1) mutation are infertile, producing apparently normal sperm that does not fertilize oocytes in standard fertilization in vitro fertilization assays. The ferf1 mutation is a single‐base change in the Dnah1 gene, encoding an axoneme‐associated dynein heavy chain, and previously associated with male infertility in both mice and humans. This missense mutation causes a single‐amino‐acid change in the DNAH1 protein in ferf1 mutant mice that leads to abnormal sperm clumping, aberrant sperm motility, and the inability of sperm to penetrate the oocyte's zona pellucida; however, the ferf1 mutant sperm is competent to fertilize zona‐free oocytes. Taken together, the various mutations affecting the DNAH1 protein in both mouse and human produce a diversity of phenotypes with both subtle and considerable differences. Thus, future identification of the interacting partners of DNAH1 might lead to understanding its unique function among the sperm dyneins.  相似文献   

4.
Female insects generally store sperm received during mating in specific organs of their reproductive tract, i.e., the spermathecae, which keep the sperm alive for a long time until fertilization occurs. We investigated spermatheca morphology and ultrastructure in the psylloidean insect Trioza alacris (Flor, 1861 ) in which spheroidal sperm packets that we refer to as ‘spermatodoses’ are found after mating. The ectoderm‐derived epithelium of the sac‐shaped spermatheca that has a proximal neck, consists of large secretory and flat cuticle‐forming cells. Secretory cells are characterized by a wide extracellular cavity, bordered by microvilli, in which electron‐dense secretion accumulates before discharge into the spermathecal lumen. The cuticle‐forming cells produce the cuticular intima of the organ and a peculiar specialized apical structure, through which secretion flows into the lumen. At mating, the male transfers bundles of sperm cells embedded in seminal fluid into the spermathecal neck. Sperm cells proceed towards the spermathecal sac lumen, where they are progressively compacted and surrounded with an envelope that also encloses secretions of both male and female origin. We describe the formation of these sperm containing structures and document the contribution of the female secretion to spermatodose or female‐determined spermatophore construction. We also discuss the choice of the term ‘spermatodose’ for T. alacris and suggest it be used to refer to sperm masses constructed in the female reproductive organs, at least when they involve the contribution of female secretion. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Commensal pea crabs inhabiting bivalves have a high reproductive output due to the extension andfecundity of the ovary. We studied the underlying morphology of the female reproductive system in the Pinnotheridae Pinnotheres pisum, Pinnotheres pectunculi and Nepinnotheres pinnotheres using light microscopy and transmission electron microscopy (TEM). Eubrachyura have internal fertilization: the paired vaginas enlarge into storage structures, the spermathecae, which are connected to the ovaries by oviducts. Sperm is stored inside the spermathecae until the oocytes are mature. The oocytes are transported by oviducts into the spermathecae where fertilization takes place. In the investigated pinnotherids, the vagina is of the “concave pattern” (sensu Hartnoll 1968 ): musculature is attached alongside flexible parts of the vagina wall that controls the dimension of its lumen. The genital opening is closed by a muscular mobile operculum. The spermatheca can be divided into two distinct regions by function and morphology. The ventral part includes the connection with vagina and oviduct and is regarded as the zone where fertilization takes place. It is lined with cuticle except where the oviduct enters the spermatheca by the “holocrine transfer tissue.” At ovulation, the oocytes have to pass through this multilayered glandular epithelium performing holocrine secretion. The dorsal part of the spermatheca is considered as the main sperm storage area. It is lined by a highly secretory apocrine glandular epithelium. Thus, two different forms of secretion occur in the spermathecae of pinnotherids. The definite role of secretion in sperm storage and fertilization is not yet resolved, but it is notable that structure and function of spermathecal secretion are more complex in pinnotherids, and probably more efficient, than in other brachyuran crabs. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Triatoma dimidiata is the vector of Trypanosoma cruzi in the Yucatan Peninsula (YP). Earlier studies have shown that domestic and peri‐domestic populations of the vector originated from the sylvan stock and that effectiveness of insecticide‐spraying was affected by re‐infestations of houses from the sylvan T. dimidiata population. In addition, in the YP most previously published reports have focused on domestic and peri‐domestic populations and very little is known about the nocturnal behavior of the sylvan populations. The main aim of our study was to determine the nightly activity patterns of adult T. dimidiata in a selected location in the YP. Secondly, we sought to document the reproductive status and infection rate of active females. During eight sampling nights spaced from late March to late July, 2007, we collected 544 adult T. dimidiata. We found that square‐cloth illuminated white traps were effective to attract the sylvan individuals and that T. dimidiata adults exhibited a unimodal activity pattern throughout the night. The accumulated mean of captured bugs also showed a non‐linear distribution for females and males. Furthermore, we found that male and female catches were significantly correlated with the means of temperature and humidity recorded during the sampling period. Out of 46 dissected females, we observed that 43.5% of females had fully‐formed eggs in their abdomens, and only two females (4.4%) had sperm within the spermatheca. The infection rate of T. dimidiata harboring T. cruzi was found to be 3.7%. The implications of the light attraction to bugs and potential dispersal capabilities are discussed in the paper in the context of infestation/re‐infestation of rural houses by sylvan T. dimidiata flying adults.  相似文献   

7.
Variation in the proportions of offspring fathered by a second male to mate (the P2 value) has been studied in two species of grasshoppers, Chorthippus parallelus (Zetterstedt) and Ch. biguttulus (Linnaeus), by means of the sterile‐male technique. In both species the P2‐values of the first egg pods laid were in the range of 50–100%, and the temporal variation of P2‐values appeared to follow two modes. In one, the P2‐value steadily declined with time, in the other it remained constant at a high level. It is concluded that sperm is passively lost between two matings. The remaining sperm then either mixes within the spermatheca or is stratified. Further variability in sperm precedence can possibly be explained by spermatophore ejection or differential use of stored sperm.  相似文献   

8.
Lepidopteran males produce two sperm types: nucleated eupyrene sperm and non‐nucleated apyrene sperm. Although apyrene sperm are infertile, both sperm types migrate from the spermatophore to the spermathecal after copulation. As a dominant adaptive explanation for migration of apyrene sperm in polyandrous species, the cheap filler hypothesis suggests that the presence of a large number of motile apyrene sperm in the spermatheca reduces female receptivity to re‐mating. However, apyrene sperm are also produced in males of the monandrous swallowtail butterfly Byasa alcinous Klug. To identify the role of apyrene sperm in these males, the present study examines the number of spermatozoa produced and transferred and the dynamics and motility of spermatozoa in the spermatheca for each type of sperm. Apyrene sperm represents approximatey 89% of the sperm produced and transferred, which is comparable to polyandrous species. Two‐day‐old males transfer approximately 17 000 eupyrene and 230 000 apyrene spermatozoa to a spermatophore; approximately 5000 eupyrene and 47 000 apyrene spermatozoa arrive at the spermatheca. Eight days after copulation, most eupyrene spermatozoa remain in the spermatheca and a quarter of them are still active. However, the number of apyrene spermatozoa decreases and those remaining lose their motility after the arriving at the spermatheca. Consequently, 8 days after copulation, no motile apyrene sperm are found. The high proportion of apyrene sperm in the spermatophore, as well as in sperm migration, suggests that the production and migration of apyrene sperm is not simply an evolutionary vestigial trait. The possible functions of apyrene sperm in monandrous species are discussed.  相似文献   

9.
The pattern of sperm predominance in doubly mated female crickets, Gryllodes supplicans, was investigated using a radiation-sterility technique. Female G. supplicans made significant use of sperm from both males in fertilizing eggs; overall, first males to mate enjoyed a small advantage, fertilizing about 60% of the offspring produced subsequent to the second mating. The combined use of the sperm of both males in fertilizing eggs occurred soon after the second mating; evidently, mixing of ejaculates within a female's spermatheca does occur. Male G. supplicans provide females with a nuptial gift, the spermatophylax, which influences the time at which a female removes the externally attached sperm-ampulla; this in turn determines the quantity of sperm that is transferred. Moreover, the degree of sperm precedence achieved by a male may be positively related to the time at which the female removes his sperm ampulla. Thus males, by feeding females, ensure not only that a sufficient number of sperm are transferred to fertilize all of a female's eggs, but also may increase the certainty of their paternity. In mating systems in which females control sperm transfer and paternity is influenced by numbers of sperm (i.e., numerical sperm competition), an increase in prezygotic investment in females may be an adaptive male response.  相似文献   

10.
When swallowtail butterflies, Papilio xuthus, are mated by the hand-pairing method, both types of sperm, eupyrene and apyrene sperm, are transferred from the male to the spermatheca via the spermatophore in the bursa copulatrix. This mechanism is demonstrated by two different kinds of experiments. The first set of experiments employed interrupted copulation, and the second set was examination of the sperm in the spermatophore and spermatheca after the termination of copulation. The sperm was transferred 30 min after the start of copulation. The eupyrene sperm was still in the bundle; the number of the bundles ranged from 9 to 108 (mean, 42.7; n = 27). The bundles were gradually released after the completion of copulation, and the free eupyrene spermatozoa then remained in the spermatophore at least 2 h before migrating to the spermatheca. On the other hand, about 160 000 apyrene spermatozoa were transferred to the spermatophore and remained there for more than 1 h. We observed 11 000 apyrene spermatozoa in the spermatheca 12 h after the completion of copulation, but most of this type of sperm disappeared shortly thereafter. In contrast, the eupyrene sperm arrived in the spermatheca more than 1 day after the completion of copulation and remained there at least 1 week. Therefore, these findings suggest that apyrene sperm migrate from the spermatophore to the spermatheca earlier than eupyrene sperm. Accordingly, if females mated multiply, the time difference might avoid the mixing of sperm. In addition, the predominance of sperm from the last mating session may occur not in the bursa copulatrix but in the spermatheca. Received: January 7, 2000 / Accepted: May 24, 2000  相似文献   

11.
This study examines the relationship between the number of sperm in the seminal receptacle (spermatheca) and the receptivity of female remating in the bean bugRiptortus clavatus Thunberg. On the 21 st day after the first mating when receptivity to remating was > 70%, females receptive to remating had significantly fewer sperm ( < 40 on average) in the spermathecae than females reluctant to do (about 150 on average). However, averages of the number of eggs laid by receptive and reluctant females within 21 days were almost same. The proportion of fertilized eggs for receptive females at 15–21 days after copulation was significantly lower than that for reluctant females. Spermatozoa transferred from a male to a female’s spermatheca were detected 5 min after copulation and then increased continuously to about 500 with the first hour. When copulation durations were manipulated artificially, the shorter the copulation period (=females had less sperm in their spermathecae), the higher the remating rate became. Females may perceive the number of sperm in their seminal receptacles and then determine whether they copulate or not. These results support the hypothesis that females mate multiply in order to replenish inadequate sperm supplies to fertilize all eggs produced.  相似文献   

12.
The molecular form composition of Anopheles gambiae Giles s.s. (Diptera: Culicidae) mating swarms and the associated mating pairs (copulae) were investigated during two rainy seasons (July to October, 2005 and July to November, 2006) in the villages of Soumousso and Vallée du Kou (VK7). Although the habitats of these villages differ markedly, sympatric populations of M and S molecular forms of An. gambiae s.s. occur in both places periodically. The main aim was to assess the degree to which these molecular forms mate assortatively. In Soumousso, a wooded savannah habitat, the majority of swarm samples consisted of only S‐form males (21/28), although a few M‐form males were found in mixed M‐ and S‐form swarms. In VK7, a rice growing area, the majority of swarm samples consisted of only M‐form males (38/62), until October and November 2006, when there were nearly as many mixed‐form as single‐form swarms. Overall, ~60% of M‐ and S‐form swarms were temporally or spatially segregated; the two forms were effectively prevented from encountering each other. Of the remaining 40% of swarms, however, only about half were single‐form and the rest were mixed‐form. Of the 33 copulae collected from mixed‐form swarms, only four were mixed‐form pairs, significantly fewer than expected by random pairing between forms (χ2 = 10.34, d.f. = 2, P < 0.01). Finally, all specimens of inseminated females were of the same form as the sperm contained within their spermatheca (n = 91), even for the four mixed‐form copulae. These findings indicate that assortative mating occurs within mixed‐form swarms, mediated most probably by close‐range mate recognition cues.  相似文献   

13.
C. Gack  K. Peschke 《Zoomorphology》1994,114(4):227-237
Summary The mechanism by which sperm are transferred from the male's spermatophore to the female's storing cage is described for the rove beetle Aleochara curtula, emphasizing a novel mechanism of sperm displacement by competing males. The cuticular, U-shaped spermatheca is equipped with a valve structure and two sclerotized teeth. The tube of the spermatophore extends into the spermathecal duct through the guidance of the flagellum of the male endophallus. Further elongation of the spermatophore tube, however, occurs only after separation of the pair. A primary tube bursts at its tip after passing through the valve. Within the lumen of the primary tube, a second tube passes through the valve and continues to extend up to the apical bulb of the spermatheca, doubles back on itself and swells to form a balloon filling most of the spermatheca. The balloon of the spermatophore is pierced within the spermatheca by tooth-like structures pressed against the spermatophore through contraction of the spermathecal muscle. The same process of spermatophore growing and swelling is also observed in mated females. Sperm from previous copulations are backflushed through the valve and the spermathecal duct, indicative of last-male sperm predominance.Abbreviations ad adhesive secretion covering the sperm - sac am amorphous secretion of the spermatophore - as ascending portion of the spermatophore - ds descending portion of the spermatophore - end parts of the male endophallus - ext extended tube - f flagellum - gs genital segment - lt large tooth - m muscle of the spermatheca - nsc non sclerotized cuticle - op opening of the spermathecal gland - pt primary tube - sc sclerotized cuticle - sd spermathecal duct - se secretion of the spermathecal gland - sf secretion flowing out of the primary tube - sg spermathecal gland - sm sperm - smt small tooth - sp spermatheca - ss sperm sac - st secondary tube - vm vaginal muscle  相似文献   

14.
A male swallowtail butterfly, Papilio xuthus, transfers both eupyrene and apyrene sperm during copulation, both of which migrate to the spermatheca via the spermatophore in the bursa copulatrix of the female. Because the spermatheca seems to remain constant in size during the female lifespan, the excess sperm migration may cause the spermatheca to overflow. Approximately 9000 eupyrene and 265 000 apyrene spermatozoa were transferred during a single copulation, and approximately 1000 eupyrene and 1100 apyrene spermatozoa successfully arrived in the spermatheca. The number of both types of spermatozoon decreased in the spermatheca after the onset of oviposition, and no eupyrene spermatozoa were found by 7 days after copulation, partly due to insemination. The spermathecal gland leading from the distal end of the spermatheca was gradually filled by eupyrene spermatozoa. Although the function of the gland remains unclear, the final destination of the sperm is likely to be the gland.  相似文献   

15.
Summary

In many simultaneously hermaphroditic land snail species, the sperm storage organ (spermatheca) is highly structured, suggesting that the female function might be able to influence offspring paternity. Physical properties of the sperm storage organ, including its initial size and sperm storage capacity, may also affect fertilization patterns in multiply mated snails. We examined the structure, volume and tubule length of empty spermathecae in the land snail, Arianta arbustorum, and assessed differences in spermatheca size following a single copulation. The number of spermathecal tubules ranged from 2–7, but was not correlated with the volume of empty spermathecae. The volume of sperm stored in the spermatheca after a copulation was correlated with neither the number of spermathecal tubules nor copulation duration. Mean spermathecal volume more than doubled between two and thirty-six hours after sperm uptake, but the length of the spermathecal tubules did not change. Interestingly, the volume of sperm stored in the spermatheca seems not to be related to the size of the spermatophore and thus not to the number of sperm received (= allosperm). The amount of allosperm digested in the bursa copulatrix was highly variable and no significant relationship with the size of the spermatophore received was found. These findings suggest that numerical aspects of sperm transfer are less important in influencing fertilization success of sperm in A. arbustorum than properties of the female reproductive tract of the sperm receiver.  相似文献   

16.
The spermathecal complex ofPhlebotomus papatasi Scopoli (Diptera: Psychodidae) undergoes histological and physiological changes during its gonotropic cycle. The present histochemical study revealed a mucopolysaccharide secretory mass in the spermathecae of the newly emerged sandfly. Sperm competition occurs when two or more males compete to fertilize an ovum in the female reproductive tract. In this study, spermatophores of two or more competing males were deposited at the base of the spermathecal ducts, which originate from the female bursa copulatrix. This suggests that females play a role in sperm displacement, which is defined as any situation in which the last male to mate with a female fertilizes maximum number her eggs. A blood meal ingested by the female for ovary development and egg laying stimulates the release of sperm from the spermatophore. The spermatozoa then migrate to the lumen of the spermatheca. The ultrastructure of spermatozoa comprises a head with double-layered acrosomal perforatorium, an elongate nucleus, and the axoneme with a 9 + 9 + 0 flagellar pattern. This axomene differs from the aflagellate axoneme of other Psychodinae. Morphological changes, such as the casting off of the acrosomal membrane, and histological changes in the spermatophore are also described. Mating plugs that have been described previously in sandflies appear to be artefacts. Females ofP. papatasi may be inseminated more than once during each gonotrophic cycle, and additional inseminations may be necessary for each cycle. The relationships between the volumes of the sperm and the spermatheca were calculated to determine sperm utilization and fecundity ofP. papatasi. As the females ofP. papatasi mate polyandrously, the anatomical and physiological complexity of the spermathecal complex may be related to post-copulatory sexual selection.  相似文献   

17.
Although the fruit fly, Drosophila melanogaster, has emerged as a model system for human disease, its potential as a model for mammalian reproductive biology has not been fully exploited. Here we describe how Drosophila can be used to study the interactions between sperm and the female reproductive tract. Like many insects, Drosophila has two types of sperm storage organs, the spermatheca and seminal receptacle, whose ducts arise from the uterine wall. The spermatheca duct ends in a capsule-like structure surrounded by a layer of gland cells. In contrast, the seminal receptacle is a slender, blind-ended tubule. Recent studies suggest that the spermatheca is specialized for long-term storage, as well as sperm maturation, whereas the receptacle functions in short-term sperm storage. Here we discuss recent molecular and morphological analyses that highlight possible themes of gamete interaction with the female reproductive tract and draw comparison of sperm storage organ design in Drosophila and other animals, particularly mammals. Furthermore, we discuss how the study of multiple sperm storage organ types in Drosophila may help us identify factors essential for sperm viability and, moreover, factors that promote long-term sperm survivorship.  相似文献   

18.
Data on sperm storage and paternity analyses in the pulmonate land snail Arianta arbustorum suggest that the complex, multitubular sperm storage organ, the spermatheca, may influence paternity after multiple matings. Ultrastructural investigations show that the spermatheca is provided with the morphological correlates to exert cryptic female choice. However, in order to understand the function of a multitubular spermatheca it is necessary to understand how a single spermathecal tubule functions. In order to explore the potential to serve as a model for such a simple system in future experiments, the fine structure of the unitubular spermatheca and its interaction with spermatozoa were investigated in Bradybaena fruticum, another member of the Helicoidea. The spermatheca of B. fruticum is only about one-half as long as the fertilization chamber. Its epithelium is densely ciliated throughout its length. Vacuole, Golgi complex, rough endoplasmic reticulum, various vesicles, wide intercellular spaces, and an extensive basal labyrinth indicate strong secretory activity, providing the environment for sperm storage and capacitation. Prior to transfer, sperm are characterized by a perinuclear sheath and an acrosome tilted at about 50°. In the spermatheca, the perinuclear sheath is dissolved and, probably as a consequence, the acrosome folds up in line with the nuclear longitudinal axis. The spermatheca is surrounded by a network of differently oriented smooth muscle cells, which are extensively connected with each other through dense plaques. The fine structure of the muscle cells suggests that they are neither very strong nor enduring. The main function of the spermathecal musculature is certainly expulsion of sperm prior to fertilization. The musculature around the spermathecal tubule of B. fruticum appears to be a highly integrated system not allowing for much functional flexibility compared to A. arbustorum, where the muscle cells are more individualized, permitting finely tuned operations. This restricted flexibility needs to be taken into consideration in future experiments using B. fruticum as a model for the simple, unitubular sperm storage system.  相似文献   

19.
In species where females mate promiscuously, competition between ejaculates from different males to fertilize the ova is an important selective force shaping many aspects of male reproductive traits, such as sperm number, sperm length and sperm–sperm interactions. In eusocial Hymenoptera (bees, wasps and ants), males die shortly after mating and their reproductive success is ultimately limited by the amount of sperm stored in the queen''s spermatheca. Multiple mating by queens is expected to impose intense selective pressure on males to optimize the transfer of sperm to the storage organ. Here, we report a remarkable case of cooperation between spermatozoa in the desert ant Cataglyphis savignyi. Males ejaculate bundles of 50–100 spermatozoa. Sperm bundles swim on average 51% faster than solitary sperm cells. Team swimming is expected to increase the amount of sperm stored in the queen spermatheca and, ultimately, enhance male posthumous fitness.  相似文献   

20.
The alignment of sperm in a cloacal sperm storage gland, the spermatheca, was studied in female desmognathine salamanders by scanning and transmission electron microscopy. Females representing nine species and collected in spring, late summer, and fall in the southern Appalachian Mountains contained abundant sperm in their spermathecae. The spermatheca is a compound tubuloalveolar gland connected by a single common tube to the middorsal wall of the cloaca. Sperm enter the common tube in small groups aligned in parallel along their axes, and continue in a straight course until encountering divisions of the common tube (neck tubules) or luminal borders of distal bulbs, which can act as barriers. Sperm may form tangles, in which small clusters retain their mutual alignment, at the branches of the neck tubules from the common tube, or in the lumen of the distal bulbs, where subsequent waves of sperm collide with sperm already present. The nuclei of some sperm from the initial group to encounter the walls of the distal bulbs appear to become embedded in secretory material on the luminal border or in the apical cytoplasm of the spermathecal epithelial cells. We propose that these sperm become trapped in the spermatheca and are ultimately degraded. J. Morphol. 238:143–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号