首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The collective behaviour of social groups is often strongly influenced by one or few individuals, termed here ‘keystone individuals’. We examined whether the influence of keystone individuals on collective behaviour lingers after their departure and whether these lingering effects scale with their tenure in the group. In the social spider, Stegodyphus dumicola, colonies'' boldest individuals wield a disproportionately large influence over colony behaviour. We experimentally manipulated keystones'' tenure in laboratory-housed colonies and tracked their legacy effects on collective prey capture following their removal. We found that bolder keystones caused more aggressive collective foraging behaviour and catalysed greater inter-individual variation in boldness within their colonies. The longer keystones remained in a colony, the longer both of these effects lingered after their departure. Our data demonstrate that, long after their disappearance, keystones have large and lasting effects on social dynamics at both the individual and colony levels.  相似文献   

2.
Within the same population, individuals often differ in how they respond to changes in their environment. A recent series of models predicts that competition in a heterogeneous environment might promote between‐individual variation in behavioural plasticity. We tested groups of sticklebacks in patchy foraging environments that differed in the level of competition. We also tested the same individuals across two different social groups and while alone to determine the social environment's influence on behavioural plasticity. In support of model predictions, individuals consistently differed in behavioural plasticity when the presence of conspecifics influenced the potential payoffs of a foraging opportunity. Whether individuals maintained their level of behavioural plasticity when placed in a new social group depended on the environmental heterogeneity. By explicitly testing predictions of recent theoretical models, we provide evidence for the types of ecological conditions under which we would expect, and not expect, variation in behavioural plasticity to be favoured.  相似文献   

3.
Habitat structure can impede visibility and movement, resulting in lower resource monopolization and aggression. Consequently, dominant individuals may prefer open habitats to maximize resource gain, or complex habitats to minimize predation risk. We explored the role of dominance on foraging, aggression and habitat choice using convict cichlids (Amatitlania nigrofasciata) in a two‐patch ideal free distribution experiment. Groups of six fish of four distinct sizes first competed for shrimp in one‐patch trials in both an open and complex habitat; half the groups experienced each habitat type first. Following these one‐patch trials, each group then chose between habitat types in a two‐patch trial while competing for food. Finally, each fish underwent an individual behavioural assessment using a battery of “personality” tests to determine if behaviour when alone accurately reflected behaviour within a social context. In the one‐patch trials, dominant fish showed similar food consumption between habitats, but chased more in the complex habitat. In the two‐patch choice trials, dominants preferred and defended the complex habitat, forming an ideal despotic distribution with more than half the fish and competitive weight in the open habitat. Within the groups, individual fish differed in foraging and chasing, with repeatabilities of 0.45 and 0.23 across all treatments. Although a higher foraging rate during the individual assessment predicted foraging rate and use of the complex habitat during the group trials, aggression and boldness tests were not reflective of group behaviour. Across groups, heavier dominants and those with higher foraging rate in the open habitat used the open habitat more, suggesting that both risk and energetic state affect habitat preference in dominant convict cichlids.  相似文献   

4.
In social groups, individuals' dominance rank, social bonds, and kinship with other group members have been shown to influence their foraging behavior. However, there is growing evidence that the particular effects of these social traits may also depend on local environmental conditions. We investigated this by comparing the foraging behavior of wild chacma baboons, Papio ursinus, under natural conditions and in a field experiment where food was spatially clumped. Data were collected from 55 animals across two troops over a 5‐month period, including over 900 agonistic foraging interactions and over 600 food patch visits in each condition. In both conditions, low‐ranked individuals received more agonism, but this only translated into reduced foraging performances for low‐ranked individuals in the high‐competition experimental conditions. Our results suggest one possible reason for this pattern may be low‐ranked individuals strategically investing social effort to negotiate foraging tolerance, but the rank‐offsetting effect of this investment being overwhelmed in the higher‐competition experimental environment. Our results also suggest that individuals may use imbalances in their social bonds to negotiate tolerance from others under a wider range of environmental conditions, but utilize the overall strength of their social bonds in more extreme environments where feeding competition is more intense. These findings highlight that behavioral tactics such as the strategic investment of social effort may allow foragers to mitigate the costs of low rank, but that the effectiveness of these tactics is likely to be limited in certain environments.  相似文献   

5.
When group members possess differing information about the environment, they may disagree on the best movement decision. Such conflicts result in group break‐ups, and are therefore a fundamental driver of fusion–fission group dynamics. Yet, a paucity of empirical work hampers our understanding of how adaptive evolution has shaped plasticity in collective behaviours that promote and maintain fusion–fission dynamics. Using movement data from GPS‐collared bison, we found that individuals constantly associated with other animals possessing different spatial knowledge, and both personal and conspecific information influenced an individual's patch choice decisions. During conflict situations, bison used group familiarity coupled with their knowledge of local foraging options and recently sampled resource quality when deciding to follow or leave a group – a tactic that led to energy‐rewarding movements. Natural selection has shaped collective behaviours for coping with social conflicts and resource heterogeneity, which maintain fusion–fission dynamics and play an essential role in animal distribution.  相似文献   

6.
Although there is much interest in behavioral syndromes, very little is known about how syndromes are generated in wild populations. Here, we assess the roles of correlated selection and divergent rearing environments in generating a syndrome between foraging aggressiveness and boldness in the spider Agelenopsis pennsylvanica. We first tested for and confirmed the presence of a behavioral syndrome between boldness and foraging aggressiveness in wild penultimate A. pennsylvanica (r = 0.24). Then, to assess the effects of rearing environment on the boldness–aggressiveness syndrome, we compared the behavioral tendencies of field‐ vs. laboratory‐reared spiders over the course of their development. The presence of the boldness–aggressiveness syndrome differed based on spiders' developmental stage and rearing environment: field‐reared juveniles did not exhibit a syndrome between boldness and foraging aggressiveness, but field‐reared penultimates did. In contrast, laboratory‐reared spiders never exhibited a behavioral syndrome, regardless of their developmental stage. Thus, the boldness–aggressiveness syndrome in A. pennsylvanica manifests only when individuals are reared in the field. Selection data from a mark–recapture study failed to indicate any signature of correlated selection, despite our finding that at least one element of the syndrome (foraging aggressiveness) can respond to selection (Heritability h2 = 0.27, from mid‐parent breeding study). Thus, contemporary correlated selection does not appear to be a major driver of the boldness–aggressiveness syndrome of A. pennsylvanica. Taken together, our data are consistent with the hypothesis that the boldness–aggressiveness syndrome exhibited by wild A. pennsylvanica develops as a result of environmentally induced phenotypic plasticity, and not correlated selection.  相似文献   

7.
Many species are shifting their ranges in response to the changing climate. In cases where such shifts lead to the colonization of a new ecosystem, it is critical to establish how the shifting species itself is impacted by novel environmental and biological interactions. Anthropogenic habitats that are analogous to the historic habitat of a shifting species may play a crucial role in the ability of that species to expand or persist in suboptimal colonized ecosystems. We tested if the anthropogenic habitat of docks, a likely mangrove analog, provides improved conditions for the range‐shifting mangrove tree crab Aratus pisonii within the colonized suboptimal salt marsh ecosystem. To test if docks provided an improved habitat, we compared the impact of the salt marsh and dock habitats on ecological and life history traits that influence the ability of this species to persist and expand into the salt marsh and compared these back to baselines in the historic mangrove ecosystem. Specifically, we examined behavior, physiology, foraging, and the thermal conditions of A. pisonii in each habitat. We found that docks provide a more favorable thermal and foraging habitat than the surrounding salt marsh, while their ability to provide conditions which improved behavior and physiology was mixed. Our study shows that anthropogenic habitats can act as analogs to historic ecosystems and enhance the habitat quality for range‐shifting species in colonized suboptimal ecosystems. If the patterns that we document are general across systems, then anthropogenic habitats may play an important facilitative role in the range shifts of species with continued climate change.  相似文献   

8.
Social organisms often show collective behaviors such as group foraging or movement.Collective behaviors can emerge from interactions between group members and may depend on the behavior of key individuals.When social interactions change over time,collective behaviors may change because these behaviors emerge from interactions among individuals.Despite the importance of,and growing interest in,the temporal dynamics of social interactions,it is not clear how to quantify changes in interactions over time or measure their stability.Furthermore,the temporal scale at which we should observe changes in social networks to detect biologically meaningful changes is not always apparent.Here we use multilayer network analysis to quantify temporal dynamics of social networks of the social spider Stegodyphus dumicola and determine how these dynamics relate to individual and group behaviors.We found that social interactions changed over time at a constant rate.Variation in both network structure and the identity of a keystone individual was not related to the mean or variance of the collective prey attack speed.Individuals that maintained a large and stable number of connections,despite changes in network structure,were the boldest individuals in the group.Therefore,social interactions and boldness are linked across time,but group collective behavior is not influenced by the stability of the social network.Our work demonstrates that dynamic social networks can be modeled in a multilayer framework.This approach may reveal biologically important temporal changes to social structure in other systems.  相似文献   

9.
Describing the factors that shape collective behaviour is central to our understanding of animal societies. Countless studies have demonstrated an effect of group size in the emergence of collective behaviours, but comparatively few have accounted for the composition/diversity of behavioural phenotypes, which is often conflated with group size. Here, we simultaneously examine the effect of personality composition and group size on nest architecture and collective foraging aggressiveness in the social spider Stegodyphus dumicola. We created colonies of two different sizes (10 or 30 individuals) and four compositions of boldness (all bold, all shy, mixed bold and shy, or average individuals) in the field and then measured their collective behaviour. Larger colonies produced bigger capture webs, while colonies containing a higher proportion of bold individuals responded to and attacked prey more rapidly. The number of attackers during collective foraging was determined jointly by composition and size, although composition had an effect size more than twice that of colony size: our results suggest that colonies of just 10 bold spiders would attack prey with as many attackers as colonies of 110 ‘average’ spiders. Thus, personality composition is a more potent (albeit more cryptic) determinant of collective foraging in these societies.  相似文献   

10.
For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state‐space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998–2011 at Padre Island National Seashore, Texas, USA (PAIS;= 22), and Rancho Nuevo, Tamaulipas, Mexico (RN;= 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (= 22 in USA,= 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their “final” foraging sites. We identified new foraging “hotspots” where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13‐year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at‐sea foraging habitats for this imperiled species.  相似文献   

11.
In group‐living animals, individuals may benefit from the presence of an innovative group‐mate because new resources made available by innovators can be exploited, for example by scrounging or social learning. As a consequence, it may pay off to take the group‐mates' problem‐solving abilities into account in social interactions such as aggression or spatial association, for example because dominance over an innovative group‐mate can increase scrounging success, while spatial proximity may increase the chance of both direct exploitation and social learning. In this study, we tested whether the individuals' innovation success influences their social interactions with group‐mates in small captive flocks of house sparrows (Passer domesticus). First, we measured the birds' actual problem‐solving success in individual food‐extracting tasks. Then, we manipulated their apparent problem‐solving success in one task (by allowing or not allowing them to open a feeder repeatedly) while a new, unfamiliar group‐member (focal individual) had the opportunity to witness their performance. After this manipulation, we observed the frequency and intensity of aggression and the frequency of spatial associations between the focal individuals and their manipulated flock‐mates. Although flock‐mates behaved according to their treatments during manipulations, their apparent problem‐solving success did not affect significantly the focal individuals' agonistic behaviour or spatial associations. These results do not support that sparrows take flock‐mates' problem‐solving abilities into account during social interactions. However, focal individuals attacked those flock‐mates more frequently that had higher actual problem‐solving success (not witnessed directly by the focal individuals), although aggression intensity and spatial association by the focal birds were unrelated to the flock‐mates' actual success. If this association between flock‐mates' actual innovativeness and focal individuals' aggression is not due to confounding effects, it may imply that house sparrows can use more subtle cues to assess the group‐mates' problem‐solving ability than direct observation of their performance in simple foraging tasks.  相似文献   

12.
In foraging groups, individuals may utilise information from their social environment to aid decision making when choosing where to search for food. Little work has looked at the costs or benefits of behavioural differences, such as consistent individual variation in boldness, with respect to learning ability. Here, we investigate the response of three‐spined stickleback (Gasterosteus aculeatus) to ‘social cues’, ‘local enhancement’ and ‘public information’ during foraging tasks. Our results confirm previous work suggesting that this species responds to social cues and local enhancement but not public information. Variation in boldness did not affect the use of different types of information. However, time taken to make a choice and reach a patch varied between fish with different levels of boldness. Contrary to expectation, shy fish were the more variable individuals, having a greater range of reaction times when responding to the tasks. This suggests that individual behavioural differences still play a role when utilising information obtained from the environment and may influence the relative benefits that could result in different contexts.  相似文献   

13.
Habitat Quality and Activity Budgets of White-Headed Langurs in Fusui,China   总被引:1,自引:0,他引:1  
Within a species, habitat quality may be a factor causing different activity budgets between populations. The habitat of white-headed langurs (Trachypithecus leucocephalus) has been seriously disturbed in Fusui Rare and Precious Animal Nature Reserve, China, where we carried out a study of their socioecology from September 1997 to September 1998. We collected data on langur activity budgets from the main population located in the central part of a group of limestone hills. We classified habitat quality into 4 grades according to the extent of human disturbance. We showed that the two main study groups of white-headed langurs spent on average 50% of time resting, 13% feeding, 18% moving (including foraging), 11% grooming, and 7% playing. Langur time budgets showed no significant seasonal change, but they differed among different sex-age classes. Infants and juveniles spent about 20.3% of time playing, whereas adults spent only 0.2% playing. The group in high quality habitat engaged less in feeding and more in playing than the group in low quality habitat did. Habitat quality influenced the playing time of young white-headed langurs and may be vital to their successful maturation.  相似文献   

14.
Barbary macaques, like other non-human primates living in highly seasonal temperate environments, display high monthly variations in their diet. In addition, their diet changes according to the habitat type they colonize and to the degree of habitat degradation due to resource exploitation by local people, in particular through pastoralism. We studied the time-budget adjustments of wild Barbary macaques in three cedar–oak forests impacted by different intensities of grazing pressure from goats and sheep. We examined how diet variations influenced the time monkeys spent in their activities and their day range lengths (i.e. their energy costs). At three studied sites, diet composition and time budgets showed marked seasonal variations. Diet composition had a strong influence on monkeys’ time budget. In the forest where pastoralism was the highest, diet included a greater proportion of underground resources, shrub fruit and acorns, which led to an increase in the time spent foraging and moving, as well as an important increase in day range lengths. Energy costs were therefore higher in a degraded environment than in a suitable habitat. The monkeys living in forests subjected to pastoralism took advantage of increased day lengths to spend more time searching for food. However, in the forest with the highest pastoralism pressure, although monkeys spent more time foraging, they spent less time feeding than monkeys at the other sites. In addition, they appeared to have reached the limits of the available time they could devote to these activities, as their diurnal resting time was at its lowest level over several months. Temperature variations did not appear to modify monkeys’ time budgets. In the least favourable habitat, saving time from resting activity allowed monkeys to maintain a relatively high level of social activity, partly linked to rearing constraints.  相似文献   

15.
Groups of animals possess phenotypes such as collective behaviour, which may determine the fitness of group members. However, the stability and robustness to perturbations of collective phenotypes in natural conditions is not established. Furthermore, whether group phenotypes are transmitted from parent to offspring groups with fidelity is required for understanding how selection on group phenotypes contributes to evolution, but parent–offspring resemblance at the group level is rarely estimated. We evaluated the repeatability, robustness to perturbation and parent–offspring resemblance of collective foraging aggressiveness in colonies of the social spider Anelosimus eximius. Among‐colony differences in foraging aggressiveness were consistent over time but changed if the colony was perturbed through the removal of individuals or via individuals’ removal and subsequent return. Offspring and parent colony behaviour were correlated at the phenotypic level, but only once the offspring colony had settled after being translocated, and the correlation overlapped with zero at the among‐colony level. The parent–offspring resemblance was not driven by a shared elevation but could be due to other environmental factors. The behaviour of offspring colonies in a common garden laboratory setting was not correlated with the behaviour of the parent colony nor with the same colony's behaviour once it was returned to the field. The phenotypes of groups represent a potentially important tier of biological organization, and assessing the stability and heritability of such phenotypes helps us better understand their role in evolution.  相似文献   

16.
We studied the potential influence of predation risk on the competitive ability and habitat use of foraging perch and the effect of these interactions on growth. Groups of four similar-sized young-of-the-year perch were in visual contact with a piscivorous perch during feeding. The fry had the choice of vegetation and open habitat, with food presented in the open habitat. Competitive ability, defined as proportion of prey attacks, varied between perch individuals and was unaffected by predation risk. The variation in proportion of prey attacks was affected by relative size within each replicate group, despite small size differences (±1 mm), with the largest individual being a better competitor than the smallest ones. The degree of boldness, measured as the proportion of time spent in the open habitat, was significantly related to both competitive ability and prey attack order. Observations of aggressive behaviour indicated a possible occurrence of interference competition, which may contribute to the appearance of different competitive abilities between individuals within a group of perch. A significant correlation was found between competitive ability and growth. Growth variation within groups was not affected by predation risk.  相似文献   

17.
Individuals of social and partially social species typically reduce their vigilance activity when foraging in groups. As a result, per capita risk of predation decreases and individuals allocate more time to foraging and other fitness rewarding activities. Reduction of per capita risk is hypothesized to occur because there are more individuals to detect potential predators. If so, collective (i.e. total) vigilance is expected to increase with foraging group size. Increased surveillance during group foraging may occur if group members scan independently of one another, or sequentially to avoid the overlapping of their vigilance bouts. Intriguingly, such coordinated vigilance assumes that individuals monitor not only the presence, but the vigilance behaviour of group mates. We used seasonal records on time budget and grouping patterns of individually marked degus (Octodon degus), a social rodent, to examine if (a) individual vigilance decreases and/or foraging increases with group size, (b) collective vigilance increases with group size and (c) foraging degus coordinate their vigilance. When foraging, degus decreased their individual vigilance and increased their foraging time when in larger groups. Despite this, degus in larger groups increased their collective vigilance, supporting the hypothesis that socially foraging degus decrease predation risk through an improved ability to detect and escape potential predators. Additionally, patterns of collective vigilance suggested that degus scan independently of each other and so, they do not coordinate their vigilance to prevent its temporal overlapping. This finding does not support that foraging degus monitor the vigilance activity of group mates.  相似文献   

18.
Urbanization causes dramatic and rapid changes to natural environments, which can lead the animals inhabiting these habitats to adjust their behavioral responses. For social animals, urbanized environments may alter group social dynamics through modification of the external environment (e.g., resource distribution). This might lead to changes in how individuals associate or engage in group behaviors, which could alter the stability and characteristics of social groups. However, the potential impacts of urban habitat use, and of habitat characteristics in general, on the nature and stability of social associations remain poorly understood. Here, we quantify social networks and dynamics of group foraging behaviors of black‐capped chickadees (N = 82, Poecile atricapillus), at four urban and four rural sites weekly throughout the nonbreeding season using feeders with radio frequency identification of individual birds. Because anthropogenic food sources in urban habitats (e.g., bird feeders) provide abundant and reliable resources, we predicted that social foraging associations may be of less value in urban groups, and thus would be less consistent than in rural groups. Additionally, decreased variability of food resources in urban habitats could lead to more predictable foraging patterns (group size, foraging duration, and the distribution of foraging events) in contrast to rural habitats. Networks were found to be highly consistent through time in both urban and rural habitats. No significant difference was found in the temporal clumping of foraging events between habitats. However, as predicted, the repeatability of the clumping of foraging events in time was significantly higher in urban than rural habitats. Our results suggest that individuals living in urban areas have more consistent foraging behaviors throughout the nonbreeding season, whereas rural individuals adjust their tactics due to less predictable foraging conditions. This first examination of habitat‐related differences in the characteristics and consistency of social networks along an urbanization gradient suggests that anthropic habitat use results in subtle modifications in social foraging patterns. Future studies should examine potential implications of these differences for variation in predation risk, energy intake, and information flow.  相似文献   

19.
Feeding behaviors of Japanese monkeys (Macaca fuscata) were compared between a warm temperate habitat (Yakushima Island: 30°N, 131°E) and a cool temperate habitat (Kinkazan Island: 38°N, 141°E). The composition of diet and the activity budget in the two habitats were very different. Time spent feeding on Kinkazan Island was 1.7 times that on Yakushima Island. Two factors seem to be responsible for these: (1) the energy required for thermoregulation of monkeys on Kinkazan Island is greater than that on Yakushima Island; and (2) the food quality, which affects the intake speed of available energy, is lower on Kinkazan Island. However, monkeys in both habitats increased their moving time and decreased their feeding time when they fed on foods of relatively high quality. Such foraging strategies are predicted by optimal foraging models. Time spent social grooming on Yakushima Island was 1.9 times that on Kinkazan Island, although there were slight seasonal changes in both areas. The difference in time spent social grooming might be explained by the overall difference in feeding time and day length between the two habitats.  相似文献   

20.
While anecdotal observations of gregarious behavior in nocturnal prosimian primates are common, most anthropologists continue to refer to them as solitary, perhaps based on the assumption that the occasional social interactions observed via ad libitum methods represent random chance encounters and not patterned social interactions. In this paper, I test the null hypothesis that nocturnal encounters between spectral tarsier (Tarsius spectrum) group members, outside of the sleeping tree, are the result of chance. Three male‐female pairs were radio‐collared and observed over a 4‐month period, using continuous focal animal sampling at the Tangkoko Nature Reserve (Sulawesi, Indonesia). Using Waser's random gas model, I found that spectral tarsiers spent more time in proximity to other group members than expected by chance, given the size of their home range and nightly path length. Adult group members spent 11% of the night in physical contact and an additional 17% of the night within a 10‐m radius of one another. Spectral tarsiers were also observed to significantly increase the amount of time spent foraging when located less than 10 m from another group member. Individuals foraging in proximity to another adult group member had lower insect capture rates compared to individuals who were not foraging in proximity to another adult group member. If living in a group is costly to these tarsiers' foraging efficiency, then why don't they actively avoid one another when foraging? One situation in which it might benefit tarsiers to be gregarious is high predation pressure. Preliminary results suggest that predation pressure by snakes may be the most likely factor selecting for the tarsiers to forage in proximity. Am J Phys Anthropol 128:74‐83, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号