共查询到20条相似文献,搜索用时 15 毫秒
1.
Lorna I. Harris David Olefeldt Nicolas Pelletier Christian Blodau Klaus-Holger Knorr Julie Talbot Liam Heffernan Merritt Turetsky 《Global Change Biology》2023,29(19):5720-5735
Rapid, ongoing permafrost thaw of peatlands in the discontinuous permafrost zone is exposing a globally significant store of soil carbon (C) to microbial processes. Mineralization and release of this peat C to the atmosphere as greenhouse gases is a potentially important feedback to climate change. Here we investigated the effects of permafrost thaw on peat C at a peatland complex in western Canada. We collected 15 complete peat cores (between 2.7 and 4.5 m deep) along four chronosequences, from elevated permafrost peat plateaus to saturated thermokarst bogs that thawed up to 600 years ago. The peat cores were analysed for peat C storage and peat quality, as indicated by decomposition proxies (FTIR and C/N ratios) and potential decomposability using a 200-day aerobic laboratory incubation. Our results suggest net C loss following thaw, with average total peat C stocks decreasing by ~19.3 ± 7.2 kg C m−2 over <600 years (~13% loss). Average post-thaw accumulation of new peat at the surface over the same period was ~13.1 ± 2.5 kg C m−2. We estimate ~19% (±5.8%) of deep peat (>40 cm below surface) C is lost following thaw (average 26 ± 7.9 kg C m−2 over <600 years). Our FTIR analysis shows peat below the thaw transition in thermokarst bogs is slightly more decomposed than peat of a similar type and age in permafrost plateaus, but we found no significant changes to the quality or lability of deeper peat across the chronosequences. Our incubation results also showed no increase in C mineralization of deep peat across the chronosequences. While these limited changes in peat quality in deeper peat following permafrost thaw highlight uncertainty in the exact mechanisms and processes for C loss, our analysis of peat C stocks shows large C losses following permafrost thaw in peatlands in western Canada. 相似文献
2.
Claire C. Treat Susan M. Natali Jessica Ernakovich Colleen M. Iversen Massimo Lupascu Anthony David McGuire Richard J. Norby Taniya Roy Chowdhury Andreas Richter Hana Šantrůčková Christina Schädel Edward A. G. Schuur Victoria L. Sloan Merritt R. Turetsky Mark P. Waldrop 《Global Change Biology》2015,21(7):2787-2803
Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large‐scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape‐level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer‐term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased ground saturation that will accompany permafrost thaw. 相似文献
3.
JONATHAN A. O'DONNELL JENNIFER W. HARDEN A. DAVID McGUIRE MIKHAIL Z. KANEVSKIY M. TORRE JORGENSON XIAOMEI XU 《Global Change Biology》2011,17(3):1461-1474
High‐latitude regions store large amounts of organic carbon (OC) in active‐layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near‐surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long‐term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near‐surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire‐induced thawing of near‐surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. 相似文献
4.
Miriam C. Jones Jennifer Harden Jonathan O'Donnell Kristen Manies Torre Jorgenson Claire Treat Stephanie Ewing 《Global Change Biology》2017,23(3):1109-1127
Permafrost peatlands store one‐third of the total carbon (C) in the atmosphere and are increasingly vulnerable to thaw as high‐latitude temperatures warm. Large uncertainties remain about C dynamics following permafrost thaw in boreal peatlands. We used a chronosequence approach to measure C stocks in forested permafrost plateaus (forest) and thawed permafrost bogs, ranging in thaw age from young (<10 years) to old (>100 years) from two interior Alaska chronosequences. Permafrost originally aggraded simultaneously with peat accumulation (syngenetic permafrost) at both sites. We found that upon thaw, C loss of the forest peat C is equivalent to ~30% of the initial forest C stock and is directly proportional to the prethaw C stocks. Our model results indicate that permafrost thaw turned these peatlands into net C sources to the atmosphere for a decade following thaw, after which post‐thaw bog peat accumulation returned sites to net C sinks. It can take multiple centuries to millennia for a site to recover its prethaw C stocks; the amount of time needed for them to regain their prethaw C stocks is governed by the amount of C that accumulated prior to thaw. Consequently, these findings show that older peatlands will take longer to recover prethaw C stocks, whereas younger peatlands will exceed prethaw stocks in a matter of centuries. We conclude that the loss of sporadic and discontinuous permafrost by 2100 could result in a loss of up to 24 Pg of deep C from permafrost peatlands. 相似文献
5.
Heidi Rodenhizer Susan M. Natali Marguerite Mauritz Meghan A. Taylor Gerardo Celis Stephanie Kadej Allison K. Kelley Emma R. Lathrop Justin Ledman Elaine F. Pegoraro Verity G. Salmon Christina Schädel Craig See Elizabeth E. Webb Edward A. G. Schuur 《Global Change Biology》2023,29(22):6286-6302
Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13-year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO2 fluxes throughout the 13-year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP, Reco, and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes. 相似文献
6.
JOSHUA R. THIENPONT KATHLEEN M. RÜHLAND MICHAEL F. J. PISARIC STEVEN V. KOKELJ LINDA E. KIMPE JULES M. BLAIS JOHN P. SMOL 《Freshwater Biology》2013,58(2):337-353
1. Rapid environmental change occurring in high‐latitude regions has the potential to cause extensive thawing of permafrost. Retrogressive thaw slumps are a particularly spectacular form of permafrost degradation that can significantly impact lake–water chemistry; however, to date, the effects on aquatic biota have received little attention. 2. We used a diatom‐based palaeolimnological approach featuring a paired lake study design to examine the impact of thaw slumping on freshwater ecosystems in the low Arctic of western Canada. We compared biological responses in six lakes affected by permafrost degradation with six undisturbed, reference lakes. 3. Slump‐affected lakes exhibited greater biological change than the paired reference systems, although all systems have undergone ecologically significant changes over the last 200 years. Four of the six reference systems showed an increase in the relative abundance of planktonic algal taxa (diatoms and scaled chrysophytes), the earliest beginning about 1900, consistent with increased temperature trends in this region. 4. The response of sedimentary diatoms to thaw slumping was understandably variable, but primarily related to the intensity of disturbance and associated changes in aquatic habitat. Five of the slump‐affected lakes recorded increases in the abundance and diversity of periphytic diatoms at the presumed time of slump initiation, consistent with increased water clarity and subsequent development of aquatic macrophyte communities. Slump‐affected lakes generally displayed lower nutrient levels; however, in one system, thaw slumping, induced by an intense fire at the site in 1968, ostensibly led to pronounced nutrient enrichment that persists today. 5. Our results demonstrate that retrogressive thaw slumping represents an important stressor to the biological communities of lakes in the western Canadian Arctic and can result in a number of limnological changes. We also show that palaeolimnological methods are effective for inferring the timing and response of aquatic ecosystems to permafrost degradation. These findings provide the first long‐term perspective on the biological response to permafrost thaw, a stressor that will become increasingly important as northern landscapes respond to climate change. 相似文献
7.
Permafrost thaw resulting from climate warming may dramatically change the succession and carbon dynamics of northern ecosystems.
To examine the joint effects of regional temperature and local species changes on peat accumulation following thaw, we studied
peat accumulation across a regional gradient of mean annual temperature (MAT). We measured aboveground net primary production
(AGNPP) and decomposition over 2 years for major functional groups and used these data to calculate a simple index of net
annual aboveground peat accumulation. In addition, we collected cores from six adjacent frozen and thawed bog sites to document
peat accumulation changes following thaw over the past 200 years. Aboveground biomass and decomposition were more strongly
controlled by local succession than regional climate. AGNPP for some species differed between collapse scars and associated
permafrost plateaus and was influenced by regional MAT. A few species, such as Picea mariana trees on frozen bogs and Sphagnum mosses in thawed bogs, sequestered a disproportionate amount of peat; in addition, changes in their abundance following thaw
changed peat accumulation. 210Pb-dated cores indicated that peat accumulation doubles following thaw and that the accumulation rate is affected by historical
changes in species during succession. Peat accumulation in boreal peatlands following thaw was controlled by a complex mix
of local vegetation changes, regional climate, and history. These results suggest that northern ecosystems may show responses
more complex than large releases of carbon during transient warming.
Received 8 August 2000; accepted 12 January 2001. 相似文献
8.
M. S. BALSHI A. D. MCGUIRE† P. DUFFY‡ M. FLANNIGAN§ D. W. KICKLIGHTER¶ J. MELILLO¶ 《Global Change Biology》2009,15(6):1491-1510
The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process‐based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2 fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post‐fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime. 相似文献
9.
MacDonald GM Kremenetski KV Beilman DW 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1501):2285-2299
The Russian treeline is a dynamic ecotone typified by steep gradients in summer temperature and regionally variable gradients in albedo and heat flux. The location of the treeline is largely controlled by summer temperatures and growing season length. Temperatures have responded strongly to twentieth-century global warming and will display a magnified response to future warming. Dendroecological studies indicate enhanced conifer recruitment during the twentieth century. However, conifers have not yet recolonized many areas where trees were present during the Medieval Warm period (ca AD 800-1,300) or the Holocene Thermal Maximum (HTM; ca 10,000-3,000 years ago). Reconstruction of tree distributions during the HTM suggests that the future position of the treeline due to global warming may approximate its former Holocene maximum position. An increased dominance of evergreen tree species in the northern Siberian forests may be an important difference between past and future conditions. Based on the slow rates of treeline expansion observed during the twentieth century, the presence of steep climatic gradients associated with the current Arctic coastline and the prevalence of organic soils, it is possible that rates of treeline expansion will be regionally variable and transient forest communities with species abundances different from today's may develop. 相似文献
10.
Mathias Gckede Min Jung Kwon Fanny Kittler Martin Heimann Nikita Zimov Sergey Zimov 《Global Change Biology》2019,25(10):3254-3266
The sustainability of the vast Arctic permafrost carbon pool under climate change is of paramount importance for global climate trajectories. Accurate climate change forecasts, therefore, depend on a reliable representation of mechanisms governing Arctic carbon cycle processes, but this task is complicated by the complex interaction of multiple controls on Arctic ecosystem changes, linked through both positive and negative feedbacks. As a primary example, predicted Arctic warming can be substantially influenced by shifts in hydrologic regimes, linked to, for example, altered precipitation patterns or changes in topography following permafrost degradation. This study presents observational evidence how severe drainage, a scenario that may affect large Arctic areas with ice‐rich permafrost soils under future climate change, affects biogeochemical and biogeophysical processes within an Arctic floodplain. Our in situ data demonstrate reduced carbon losses and transfer of sensible heat to the atmosphere, and effects linked to drainage‐induced long‐term shifts in vegetation communities and soil thermal regimes largely counterbalanced the immediate drainage impact. Moreover, higher surface albedo in combination with low thermal conductivity cooled the permafrost soils. Accordingly, long‐term drainage effects linked to warming‐induced permafrost degradation hold the potential to alleviate positive feedbacks between permafrost carbon and Arctic warming, and to slow down permafrost degradation. Self‐stabilizing effects associated with ecosystem disturbance such as these drainage impacts are a key factor for predicting future feedbacks between Arctic permafrost and climate change, and, thus, neglect of these mechanisms will exaggerate the impacts of Arctic change on future global climate projections. 相似文献
11.
Mei He Qinlu Li Leiyi Chen Shuqi Qin Yakov Kuzyakov Yang Liu Dianye Zhang Xuehui Feng Dan Kou Tonghua Wu Yuanhe Yang 《Global Change Biology》2023,29(16):4638-4651
Climate warming leads to widespread permafrost thaw with a fraction of the thawed permafrost carbon (C) being released as carbon dioxide (CO2), thus triggering a positive permafrost C-climate feedback. However, large uncertainty exists in the size of this model-projected feedback, partly owing to the limited understanding of permafrost CO2 release through the priming effect (i.e., the stimulation of soil organic matter decomposition by external C inputs) upon thaw. By combining permafrost sampling from 24 sites on the Tibetan Plateau and laboratory incubation, we detected an overall positive priming effect (an increase in soil C decomposition by up to 31%) upon permafrost thaw, which increased with permafrost C density (C storage per area). We then assessed the magnitude of thawed permafrost C under future climate scenarios by coupling increases in active layer thickness over half a century with spatial and vertical distributions of soil C density. The thawed C stocks in the top 3 m of soils from the present (2000–2015) to the future period (2061–2080) were estimated at 1.0 (95% confidence interval (CI): 0.8–1.2) and 1.3 (95% CI: 1.0–1.7) Pg (1 Pg = 1015 g) C under moderate and high Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5, respectively. We further predicted permafrost priming effect potential (priming intensity under optimal conditions) based on the thawed C and the empirical relationship between the priming effect and permafrost C density. By the period 2061–2080, the regional priming potentials could be 8.8 (95% CI: 7.4–10.2) and 10.0 (95% CI: 8.3–11.6) Tg (1 Tg = 1012 g) C year−1 under the RCP 4.5 and RCP 8.5 scenarios, respectively. This large CO2 emission potential induced by the priming effect highlights the complex permafrost C dynamics upon thaw, potentially reinforcing permafrost C-climate feedback. 相似文献
12.
Christian G. Andresen Mark J. Lara Craig E. Tweedie Vanessa L. Lougheed 《Global Change Biology》2017,23(3):1128-1139
Plant‐mediated CH4 flux is an important pathway for land–atmosphere CH4 emissions, but the magnitude, timing, and environmental controls, spanning scales of space and time, remain poorly understood in arctic tundra wetlands, particularly under the long‐term effects of climate change. CH4 fluxes were measured in situ during peak growing season for the dominant aquatic emergent plants in the Alaskan arctic coastal plain, Carex aquatilis and Arctophila fulva, to assess the magnitude and species‐specific controls on CH4 flux. Plant biomass was a strong predictor of A. fulva CH4 flux while water depth and thaw depth were copredictors for C. aquatilis CH4 flux. We used plant and environmental data from 1971 to 1972 from the historic International Biological Program (IBP) research site near Barrow, Alaska, which we resampled in 2010–2013, to quantify changes in plant biomass and thaw depth, and used these to estimate species‐specific decadal‐scale changes in CH4 fluxes. A ~60% increase in CH4 flux was estimated from the observed plant biomass and thaw depth increases in tundra ponds over the past 40 years. Despite covering only ~5% of the landscape, we estimate that aquatic C. aquatilis and A. fulva account for two‐thirds of the total regional CH4 flux of the Barrow Peninsula. The regionally observed increases in plant biomass and active layer thickening over the past 40 years not only have major implications for energy and water balance, but also have significantly altered land–atmosphere CH4 emissions for this region, potentially acting as a positive feedback to climate warming. 相似文献
13.
Manuel Helbig Laura E. Chasmer NatasCha Kljun William L. Quinton Claire C. Treat Oliver Sonnentag 《Global Change Biology》2017,23(6):2413-2427
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus (‘forest’) lead to expansion of permafrost‐free wetlands (‘wetland’). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4) emissions. Here, we quantify the thaw‐induced increase in CH4 emissions for a boreal forest‐wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long‐term net carbon dioxide (CO2) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland‐to‐forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May–October) wetland CH4 emission of ~13 g CH4 m?2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4 m?2. In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr?1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4 m?2 yr?1 in landscape CH4 emissions. A long‐term net CO2 uptake of >200 g CO2 m?2 yr?1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long‐term apparent carbon accumulation rates in similar boreal forest‐wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long‐term net CO2 uptake between 49 and 157 g CO2 m?2 yr?1. Thus, thaw‐induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century. 相似文献
14.
Caitlin E. Hicks Pries Richard S. P. van Logtestijn Edward A. G. Schuur Susan M. Natali Johannes H. C. Cornelissen Rien Aerts Ellen Dorrepaal 《Global Change Biology》2015,21(12):4508-4519
Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage—a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte‐dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year‐round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock‐dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short‐ and long‐term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon‐rich permafrost ecosystems. 相似文献
15.
Philip Camill 《Global Change Biology》2000,6(2):169-182
With rapid climate warming, ecosystems will probably exhibit complex dynamics because local factors and life history attributes of species mediate the effects of regional climate change. To assess the relative importance of local vs. regional processes on permafrost formation in boreal peatlands, I sampled for permafrost and factors affecting its formation in 38 collapse scars across a 4 °C mean annual temperature (MAT) gradient in the discontinuous permafrost zone of northern Manitoba, Canada. Three complimentary approaches were used to model factors important to permafrost formation at both local and regional scales. In the first analysis, a mechanistic, spatial model of permafrost formation was developed as a function of Picea mariana size and proximity. In the second approach, permafrost formation was modelled as a function of two local factors, diameter of Picea mariana trees and emergent organic matter depth, and the regional factor, mean annual temperature (MAT). Finally, published aerial photography data were used to determine whether the proportion of bogs with permafrost changes across a MAT gradient. Results show that permafrost formation in boreal permafrost peatlands is best described as a locally driven process within regional climatic constraints. At local scales of 1–2 meters, the spatial and size distributions of trees controlled the spatial distribution of permafrost. At regional scales, tree size was a significantly better predictor than emergent organic matter or MAT. These results suggest that transient models of discontinuous permafrost based only on climate may poorly predict changes in vegetation and permafrost. 相似文献
16.
Zhaosheng Fan Anthony David McGuire Merritt R. Turetsky Jennifer W. Harden James Michael Waddington Evan S. Kane 《Global Change Biology》2013,19(2):604-620
It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process‐based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS‐TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water‐table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios. 相似文献
17.
During the past ~50 years, the number and area of lakes have declined in several regions in boreal forests. However, there has been substantial finer‐scale heterogeneity; some lakes decreased in area, some showed no trend, and others increased. The objective of this study was to identify the primary mechanisms underlying heterogeneous trends in closed‐basin lake area. Eight lake characteristics (δ18O, electrical conductivity, surface : volume index, bank slope, floating mat width, peat depth, thaw depth at shoreline, and thaw depth at the forest boundary) were compared for 15 lake pairs in Alaskan boreal forest where one lake had decreased in area since ~1950, and the other had not. Mean differences in characteristics between paired lakes were used to identify the most likely of nine mechanistic scenarios that combined three potential mechanisms for decreasing lake area (talik drainage, surface water evaporation, and terrestrialization) with three potential mechanisms for nondecreasing lake area (subpermafrost groundwater recharge through an open talik, stable permafrost, and thermokarst). A priori expectations of the direction of mean differences between decreasing and nondecreasing paired lakes were generated for each scenario. Decreasing lakes had significantly greater electrical conductivity, greater surface : volume indices, shallower bank slopes, wider floating mats, greater peat depths, and shallower thaw depths at the forest boundary. These results indicated that the most likely scenario was terrestrialization as the mechanism for lake area reduction combined with thermokarst as the mechanism for nondecreasing lake area. Terrestrialization and thermokarst may have been enhanced by recent warming which has both accelerated permafrost thawing and lengthened the growing season, thereby increasing plant growth, floating mat encroachment, transpiration rates, and the accumulation of organic matter in lake basins. The transition to peatlands associated with terrestrialization may provide a transient increase in carbon storage enhancing the role of northern ecosystems as major stores of global carbon. 相似文献
18.
Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest 总被引:1,自引:0,他引:1
Neslihan Ta? Emmanuel Prestat Jack W McFarland Kimberley P Wickland Rob Knight Asmeret Asefaw Berhe Torre Jorgenson Mark P Waldrop Janet K Jansson 《The ISME journal》2014,8(9):1904-1919
Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG—CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. 相似文献
19.
Manuel Helbig Laura E. Chasmer Ankur R. Desai Natascha Kljun William L. Quinton Oliver Sonnentag 《Global Change Biology》2017,23(8):3231-3248
In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO2) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw‐induced collapse‐scar bog (‘wetland’) expansion. However, their combined effect on landscape‐scale net ecosystem CO2 exchange (NEELAND), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEELAND and direct climate change impacts on modeled temperature‐ and light‐limited NEELAND of a boreal forest–wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEELAND (?20 g C m?2) and wetland NEE (?24 g C m?2) were similar, suggesting negligible wetland expansion effects on NEELAND. In contrast, we find non‐negligible direct climate change impacts when modeling NEELAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light‐limited in fall. In a warmer climate, ER increases year‐round in the absence of moisture stress resulting in net CO2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO2 uptake is projected to decline by 25 ± 14 g C m?2 for a moderate and 103 ± 38 g C m?2 for a high warming scenario, potentially reversing recently observed positive net CO2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO2 uptake of boreal forest–wetland landscapes may decline, and ultimately, these landscapes may turn into net CO2 sources under continued anthropogenic CO2 emissions. We conclude that NEELAND changes are more likely to be driven by direct climate change rather than by indirect land cover change impacts. 相似文献
20.
- Increasing rates of precipitation and higher air temperatures have increased the size and frequency of retrogressive thaw slumps—large depressions of thawed permafrost that form on the landscape—in north‐western Canada. Many of these thaw slumps flow into nearby stream systems, leading to increased sediment, solute and nutrient loads.
- We evaluated the impacts of retrogressive thaw slumps on measurements of algal biomass accumulation and decomposition of organic materials in streams in the Peel Plateau, Northwest Territories. We predicted that increased sediment loads from thaw slumps would decrease algal standing stock and decomposition in thaw slump‐impacted streams, overriding the potential positive effects of increased nutrient concentrations.
- Chl‐a measurements were obtained as a proxy for algal standing stock from sites upstream and downstream of thaw slumps by performing algae scrapes and deploying artificial substrates in 2014. Cotton strips were deployed at upstream and downstream sites in 2013 and 2014, and tensile strength was measured to assess breakdown. Grab water samples were taken to measure physical and chemical parameters at each site.
- Thaw slumps increased total suspended solids, but not dissolved nutrients at downstream sites. Our results indicated a significant negative relationship between Chl‐a and total suspended solids. Decomposition indicated a negative relationship with total suspended solids, but displayed much stronger positive relationships with temperature, pH and dissolved phosphorus.
- Our findings indicated that total suspended solids were a stronger driver of change in thaw slump‐impacted stream reaches than nutrients, although nutrients may be more influential during the initiation of thaw slump disturbances. Algal biomass accumulation was found to be more sensitive to thaw slump impacts than decomposition, which may lead to a functional and structural shift in favour of allochthonous‐based food webs over autochthonous ones at thaw slump‐impacted stream reaches.