首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Climate change has already altered global patterns of biodiversity by modifying the geographic distributions of species. Forecasts based on bioclimatic envelop modeling of distributions of species suggests greater impacts can be expected in the future, but such projections are contingent on assumptions regarding future climate and migration rates of species. Here, we present a first assessment of the potential impact of climate change on a global biodiversity hotspot in southwestern Western Australia. Across three representative scenarios of future climate change, we simulated migration of 100 Banksia (Proteaceae) species at a rate of 5 km decade?1 and compared projected impacts with those under the commonly applied, but acknowledged as inadequate, assumptions of ‘full‐’ and ‘no‐migration.’ Across all climate × migration scenarios, 66% of species were projected to decline, whereas only 6% were projected to expand or remain stable. Between 5% and 25% of species were projected to suffer range losses of 100% by 2080, depending mainly on climate scenario. Species losses were driven primarily by changes in current precipitation regimes, with the greatest losses of species projected to occur in a transition zone between wet coastal areas and interior arid regions and which is projected to become more arid in the future. Because the ranges of most species tended to collapse in all climate scenarios, we found that climate change impacts to flora of southwestern Western Australia may be large, even under optimistic assumptions regarding migration abilities. Taken together, our results suggest that the future of biodiversity in southwestern Western Australia may lie largely in the degree to which this hotspot experiences increased drought and in the ability of species to tolerate such decreases in precipitation. More broadly, our study is among a growing number of theoretical studies suggesting the impacts of future climate change on global biodiversity may be considerable.  相似文献   

2.
This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982–2006) and three SRES scenarios (B1, B2 and A1B, 2040–2064) under rainfed and irrigated conditions, using a process‐based crop model, SIMPLACE . We found that projected climate change decreased NIR of the three winter crops in northern Europe (up to 81 mm), but increased NIR of all the six crops in the Mediterranean regions (up to 182 mm yr?1). Climate change increased yields of the three winter crops and sugar beet in middle and northern regions (up to 36%), but decreased their yields in Mediterranean countries (up to 81%). Consideration of CO2 effects can alter the direction of change in NIR for irrigated crops in the south and of yields for C3 crops in central and northern Europe. Constraining the model to rainfed conditions for spring crops led to a negative bias in simulating climate change impacts on yields (up to 44%), which was proportional to the irrigation ratio of the simulation unit. Impacts on NIR and yields were generally consistent across the three SRES scenarios for the majority of regions in Europe. We conclude that due to the magnitude of irrigation and CO2 effects, they should both be considered in the simulation of climate change impacts on crop production and water availability, particularly for crops and regions with a high proportion of irrigated crop area.  相似文献   

3.
Aim Bees are the most important pollinators of flowering plants and essential ecological keystone species contributing to the integrity of most terrestrial ecosystems. Here, we examine the potential impact of climate change on bees’ geographic range in a global biodiversity hotspot. Location South Africa with a focus on the Cape Floristic Region (CFR) diversity hotspot. Methods  Geographic ranges of 12 South African bee species representing dominant distribution types were studied, and the climate change impacts upon bees were examined with A2 and B2 climate scenarios of HadCM3 model, using MaxEnt for species distribution modelling. Results The predicted levels of climate change‐induced impacts on species ranges varied from little shifts and range expansion of 5–50% for two species to substantial range contractions between 32% and 99% in another six species. Four species show considerable range shifts. Bees of the winter rainfall area in the west of South Africa generally have smaller range sizes than in the summer rainfall area and generally show eastward range contractions toward the dry interior. Bee species prevalent in summer rainfall regions show a tendency for a south‐easterly shift in geographic range. Main conclusions The bee fauna of the CFR is identified as the most vulnerable to climate change due to the high level of endemism, the small range sizes and the island‐like isolation of the Mediterranean‐type climate region at the SW tip of Africa. For monitoring climate change impact on bees, we suggest to establish observatories in the coastal plains of the west coast that are predicted to be worst affected and areas where persistence of populations is most likely. Likely impacts of climate change on life history traits of bees (phenology, sociality, bee‐host plant synchronization) are discussed but require further investigation.  相似文献   

4.
Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions.  相似文献   

5.
Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001 indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of variables strongly contributed. The area deemed to be “suitable” for 2001 species presence was strongly affected by the choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected LULC change. However, the choice of study area impacted results for both current and projected model applications, with truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges.  相似文献   

6.

Aims

Major changes to rainfall regimes are predicted for the future but the effect of such changes on terrestrial ecosystem function is largely unknown. We created a rainfall manipulation experiment to investigate the effects of extreme changes in rainfall regimes on ecosystem functioning in a grassland system.

Methods

We applied two rainfall regimes; a prolonged drought treatment (30 % reduction over spring and summer) and drought/downpour treatment (long periods of no rainfall interspersed with downpours), with an ambient control. Both rainfall manipulations included increased winter rainfall. We measured plant community composition, CO2 fluxes and soil nutrient availability.

Results

Plant species richness and cover were lower in the drought/downpour treatment, and showed little recovery after the treatment ceased. Ecosystem processes were less affected, possibly due to winter rainfall additions buffering reduced summer rainfall, which saw relatively small soil moisture changes. However, soil extractable P and ecosystem respiration were significantly higher in rainfall change treatments than in the control.

Conclusions

This grassland appears fairly resistant, in the short term, to even the more extreme rainfall changes that are predicted for the region, although prolonged study is needed to measure longer-term impacts. Differences in ecosystem responses between the two treatments emphasise the variety of ecosystem responses to changes in both the size and frequency of rainfall events. Given that model predictions are inconsistent there is therefore a need to assess ecosystem function under a range of potential climate change scenarios.  相似文献   

7.
Changes in rainfall availability will alter soil‐nutrient availability under a climate‐change scenario. However, studies have usually analyzed the effect of either drier or wetter soil conditions, despite the fact that both possibilities will coexist in many climatic regions of the world. Furthermore, its effect may vary across the different habitats of the ecosystem. We experimentally investigated the effect of three contrasting climatic scenarios on different carbon (C), nitrogen (N), and phosphorus (P) fractions in soil and microbial compartments among three characteristic habitats in a Mediterranean‐type ecosystem: forest, shrubland, and open areas. The climatic scenarios were dry summers, according to the 30% summer rainfall reduction projected in the Mediterranean; wet summer, simulating summer storms to reach the maximum historical records in the study area; and current climatic conditions (control). Sampling was replicated during two seasons (spring and summer) and 2 years. The climatic scenario did not affect the nutrient content in the litter layer. However, soil and microbial nutrients varied among seasons, habitats, and climatic scenarios. Soil‐nutrient fractions increased with lower soil‐moisture conditions (dry scenario and summer), whereas microbial nutrients increased under the wet summer scenario and spring. This pattern was consistent both studied years, although it was modulated by habitat, differences being lower with denser plant cover. Holm oak seedlings, used as live control of the experiment, tended to increase their N and P content (although not significantly) with water availability. Thus, the results support the idea that higher rainfall boosts microbial and plant‐nutrient uptake, and hence nutrient cycling. By contrast, a rainfall reduction leads to an accumulation of nutrients in the soil, increasing the risk of nutrient loss by leaching or erosion. These results show that the projected climate change will have significant effects on nutrient cycles, and therefore will have important implications on the ecosystem functioning.  相似文献   

8.
Climate scenarios for high‐latitude areas predict not only increased summer temperatures, but also larger variation in snowfall and winter temperatures. By using open‐top chambers, we experimentally manipulated both summer temperatures and winter and spring snow accumulations and temperatures independently in a blanket bog in subarctic Sweden, yielding six climate scenarios. We studied the effects of these scenarios on flowering phenology and flower production of Andromeda polifolia (woody evergreen) and Rubus chamaemorus (perennial herb) during 2 years. The second year of our study (2002) was characterized by unusually high spring and early summer temperatures. Our winter manipulations led to consistent increases in winter snow cover. As a result, average and minimum air and soil temperatures in the high snow cover treatments were higher than in the winter ambient treatments, whereas temperature fluctuations were smaller. Spring warming resulted in higher average, minimum, and maximum soil temperatures. Summer warming led to higher air and soil temperatures in mid‐summer (June–July), but not in late summer (August–September). The unusually high temperatures in 2002 advanced the median flowering date by 2 weeks for both species in all treatments. Superimposed on this effect, we found that for both Andromeda and Rubus, all our climate treatments (except summer warming for Rubus) advanced flowering by 1–4 days. The total flower production of both species showed a more or less similar response: flower production in the warm year 2002 exceeded that in 2001 by far. However, in both species flower production was only stimulated by the spring‐warming treatments. Our results show that the reproductive ecology of both species is very responsive to climate change but this response is very dependent on specific climate events, especially those that occur in winter and spring. This suggests that high‐latitude climate change experiments should focus more on winter and spring events than has been the case so far.  相似文献   

9.
Global warming will influence the growth and development of both crops and pathogens. The aims of this study were to investigate potential effects of future warming on oilseed rape growth and the epidemiology of the three economically important pathogens Verticillium longisporum, Sclerotinia sclerotiorum, and Leptosphaeria maculans (anamorph: Phoma lingam). We utilized climate chambers and a soil warming facility, where treatments represented regional warming scenarios for Lower Saxony, Germany, by 2050 and 2100, and compared results of both approaches on a thermal time scale by calculating degree‐days (dd) from day of sowing, December 1st and March 1st until sampling, the latter correlating best with disease progress. Regression analysis showed that plant growth and growth stages in spring responded almost linearly to increasing thermal time until 1000–1500 dd. Colonization of plant tissue by V. longisporum showed an exponential increase when exceeding 1300–1500 dd and reaching plant growth stage BBCH 74/75 (pod development). V. longisporum colonization of plants may be advanced, potentially leading to higher inoculum densities after harvest and increased economic importance of this pathogen under future warming. Sclerotia germination of S. sclerotiorum reached its maximum at 600–900 dd. Advance of these critical degree‐days may lead to earlier apothecia production, potentially advancing the infection window, whereas the future importance of S. sclerotiorum may remain constant. Severity of phoma crown canker increased linearly with increasing thermal time, but showed also large variation in response to the warming scenarios, suggesting that factors such as canopy microclimate in fall or leaf shedding over winter may play a bigger role for L. maculans infection and disease severity than higher soil temperatures. Thermal time was a suitable tool to combine and integrate data on biological responses to soil and air temperature increases from climate chamber and field experiments.  相似文献   

10.
Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow‐covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5‐year snow‐removal experiment whereby snow was removed for the first 4–5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire, USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology of Acer saccharum (sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional‐scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under the RCP 4.5 and 8.5 emissions scenarios, we project a 49%–95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow‐covered forests.  相似文献   

11.
Climate refugia are regions that animals can retreat to, persist in and potentially then expand from under changing environmental conditions. Most forecasts of climate change refugia for species are based on correlative species distribution models (SDMs) using long‐term climate averages, projected to future climate scenarios. Limitations of such methods include the need to extrapolate into novel environments and uncertainty regarding the extent to which proximate variables included in the model capture processes driving distribution limits (and thus can be assumed to provide reliable predictions under new conditions). These limitations are well documented; however, their impact on the quality of climate refugia predictions is difficult to quantify. Here, we develop a detailed bioenergetics model for the koala. It indicates that range limits are driven by heat‐induced water stress, with the timing of rainfall and heat waves limiting the koala in the warmer parts of its range. We compare refugia predictions from the bioenergetics model with predictions from a suite of competing correlative SDMs under a range of future climate scenarios. SDMs were fitted using combinations of long‐term climate and weather extremes variables, to test how well each set of predictions captures the knowledge embedded in the bioenergetics model. Correlative models produced broadly similar predictions to the bioenergetics model across much of the species' current range – with SDMs that included weather extremes showing highest congruence. However, predictions in some regions diverged significantly when projecting to future climates due to the breakdown in correlation between climate variables. We provide unique insight into the mechanisms driving koala distribution and illustrate the importance of subtle relationships between the timing of weather events, particularly rain relative to hot‐spells, in driving species–climate relationships and distributions. By unpacking the mechanisms captured by correlative SDMs, we can increase our certainty in forecasts of climate change impacts on species.  相似文献   

12.
Climate and land use change impacts on plant distributions in Germany   总被引:1,自引:0,他引:1  
We present niche-based modelling to project the distribution of 845 European plant species for Germany using three different models and three scenarios of climate and land use changes up to 2080. Projected changes suggested large effects over the coming decades, with consequences for the German flora. Even under a moderate scenario (approx. +2.2 degrees C), 15-19% (across models) of the species we studied could be lost locally-averaged from 2995 grid cells in Germany. Models projected strong spatially varying impacts on the species composition. In particular, the eastern and southwestern parts of Germany were affected by species loss. Scenarios were characterized by an increased number of species occupying small ranges, as evidenced by changes in range-size rarity scores. It is anticipated that species with small ranges will be especially vulnerable to future climate change and other ecological stresses.  相似文献   

13.
Understanding the response of soil respiration to climate variability is critical to formulate realistic predictions of future carbon (C) fluxes under different climate change scenarios. There is growing evidence that the influence of long-term climate variability in C fluxes from terrestrial ecosystems is modulated by adjustments in the aboveground–belowground links. Here, we studied the inter-annual variability in soil respiration from a wet shrubland going through successional change in North Wales (UK) during 13 years. We hypothesised that the decline in plant productivity observed over a decade would result in a decrease in the apparent sensitivity of soil respiration to soil temperature, and that rainfall variability would explain a significant fraction of the inter-annual variability in plant productivity, and consequently, in soil respiration, due to excess-water constraining nutrient availability for plants. As hypothesised, there were parallel decreases between plant productivity and annual and summer CO2 emissions over the 13-year period. Soil temperatures did not follow a similar trend, which resulted in a decline in the apparent sensitivity of soil respiration to soil temperature (apparent Q10 values decreased from 9.4 to 2.8). Contrary to our second hypothesis, summer maximum air temperature rather than rainfall was the climate variable with the greatest influence on aboveground biomass and annual cumulative respiration. Since summer air temperature and rainfall were positively associated, the greatest annual respiration values were recorded during years of high rainfall. The results suggest that adjustments in plant productivity might have a critical role in determining the long-term-sensitivity of soil respiration to changing climate conditions.  相似文献   

14.
Continental‐scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill‐suited for assessment of species‐specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high‐resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36–55% of alpine species, 31–51% of subalpine species and 19–46% of montane species lose more than 80% of their suitable habitat by 2070–2100. While our high‐resolution analyses consistently indicate marked levels of threat to cold‐adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.  相似文献   

15.
Plant species have responded to recent increases in global temperatures by shifting their geographical ranges poleward and to higher altitudes. Bioclimate models project future range contractions of montane species as suitable climate space shifts uphill. The species–climate relationships underlying such models are calibrated using data at either ‘macro’ scales (coarse resolution, e.g. 50 km × 50 km, and large spatial extent) or ‘local’ scales (fine resolution, e.g. 50 m × 50 m, and small spatial extent), but the two approaches have not been compared. This study projected macro (European) and local models for vascular plants at a mountain range in Scotland, UK, under low (+1.7 °C) and high (+3.3 °C) climate change scenarios for the 2080s. Depending on scenario, the local models projected that seven or eight out of 10 focal montane species would lose all suitable climate space at the site. However, the European models projected such a loss for only one species. The cause of this divergence was investigated by cross‐scale comparisons of estimated temperatures at montane species' warm range edges. The results indicate that European models overestimated species' thermal tolerances because the input coarse resolution climate data were biased against the cold, high‐altitude habitats of montane plants. Although tests at other mountain ranges are required, these results indicate that recent large‐scale modelling studies may have overestimated montane species' ability to cope with increasing temperatures, thereby underestimating the potential impacts of climate change. Furthermore, the results suggest that montane species persistence in microclimatic refugia might not be as widespread as previously speculated.  相似文献   

16.
Climate change represents a primary threat to species persistence and biodiversity at a global scale. Cold adapted alpine species are especially sensitive to climate change and can offer key “early warning signs” about deleterious effects of predicted change. Among mountain ungulates, survival, a key determinant of demographic performance, may be influenced by future climate in complex, and possibly opposing ways. Demographic data collected from 447 mountain goats in 10 coastal Alaska, USA, populations over a 37‐year time span indicated that survival is highest during low snowfall winters and cool summers. However, general circulation models (GCMs) predict future increase in summer temperature and decline in winter snowfall. To disentangle how these opposing climate‐driven effects influence mountain goat populations, we developed an age‐structured population model to project mountain goat population trajectories for 10 different GCM/emissions scenarios relevant for coastal Alaska. Projected increases in summer temperature had stronger negative effects on population trajectories than the positive demographic effects of reduced winter snowfall. In 5 of the 10 GCM/representative concentration pathway (RCP) scenarios, the net effect of projected climate change was extinction over a 70‐year time window (2015–2085); smaller initial populations were more likely to go extinct faster than larger populations. Using a resource selection modeling approach, we determined that distributional shifts to higher elevation (i.e., “thermoneutral”) summer range was unlikely to be a viable behavioral adaptation strategy; due to the conical shape of mountains, summer range was expected to decline by 17%–86% for 7 of the 10 GCM/RCP scenarios. Projected declines of mountain goat populations are driven by climate‐linked bottom‐up mechanisms and may have wide ranging implications for alpine ecosystems. These analyses elucidate how projected climate change can negatively alter population dynamics of a sentinel alpine species and provide insight into how demographic modeling can be used to assess risk to species persistence.  相似文献   

17.
1. The changing climate is altering species distributions with consequences for population dynamics, resulting in winners and losers in the Anthropocene. 2. Agraulis vanillae, the gulf fritillary butterfly, has expanded its range in the past 100 years in the western U.S.A. Time series analysis is combined with species distribution modelling to investigate factors limiting the distribution of A. vanillae and to predict future shifts under warming scenarios. 3. Time series analyses from the western U.S.A. show that urban development has a positive association with year of colonisation (the host plant Passiflora is an ornamental in gardens). Colonisation was also associated positively and to a lesser extent with winter maximum temperatures, whereas a negative impact of minimum temperatures and precipitation was apparent on population growth rates after establishment. 4. Species distribution models vary by region. In the eastern U.S.A., the butterfly is primarily limited by minimum temperatures in the winter and host availability later in the season. Eastern U.S. projected expansion broadly follows the expectation of poleward distributional shifts, especially for the butterfly's maximum annual extent. Western U.S. distributions are limited by the host plant, which in turn is dependent on urban centres. Projected western U.S. expansion is not limited to a single direction and is driven by urban centres becoming more suitable for the host plant. 5. These results demonstrate the value of combining time series with spatial modelling, at the same time as incorporating biotic interactions, aiming to understand and predict shifting geographical ranges in the Anthropocene.  相似文献   

18.
Human activities alter patterns of biodiversity, particularly through species extinctions and range shifts. Two of these activities are human mediated transfer of species and contemporary climate change, and both allow previously isolated genotypes to come into contact and hybridize, potentially altering speciation rates. Hybrids have been shown to survive environmental conditions not tolerated by either parent, suggesting that, under some circumstances, hybrids may be able to expand their ranges and perform well under rapidly changing conditions. However, studies assessing how hybridization influences contemporary range shifts are scarce. We performed crosses on Pyura herdmani and Pyura stolonifera (Chordata, Tunicata), two closely related marine invertebrate species that are ecologically dominant and can hybridize. These sister species live in sympatry along the coasts of southern Africa, but one has a disjunct distribution that includes northern hemisphere sites. We experimentally assessed the performance of hybrid and parental crosses using different temperature regimes, including temperatures predicted under future climate change scenarios. We found that hybrids showed lower performance than parental crosses at the experimental temperatures, suggesting that hybrids are unlikely to expand their ranges to new environments. In turn, we found that the more widespread species performed better at a wide array of temperatures, indicating that this parental species may cope better with future conditions. This study illustrates how offspring fitness may provide key insights to predict range expansions and how contemporary climate change may mediate both the ability of hybrids to expand their ranges and the occurrence of speciation as a result of hybridization.  相似文献   

19.
Aim To compare theoretical approaches towards estimating risks of plant species loss to anthropogenic climate change impacts in a biodiversity hotspot, and to develop a practical method to detect signs of climate change impacts on natural populations. Location The Fynbos biome of South Africa, within the Cape Floristic Kingdom. Methods Bioclimatic modelling was used to identify environmental limits for vegetation at both biome and species scale. For the biome as a whole, and for 330 species of the endemic family Proteaceae, tolerance limits were determined for five temperature and water availability‐related parameters assumed critical for plant survival. Climate scenarios for 2050 generated by the general circulation models HadCM2 and CSM were interpolated for the region. Geographic Information Systems‐based methods were used to map current and future modelled ranges of the biome and 330 selected species. In the biome‐based approach, predictions of biome areal loss were overlayed with species richness data for the family Proteaceae to estimate extinction risk. In the species‐based approach, predictions of range dislocation (no overlap between current range and future projected range) were used as an indicator of extinction risk. A method of identifying local populations imminently threatened by climate change‐induced mortality is also described. Results A loss of Fynbos biome area of between 51% and 65% is projected by 2050 (depending on the climate scenario used), and roughly 10% of the endemic Proteaceae have ranges restricted to the area lost. Species range projections suggest that a third could suffer complete range dislocation by 2050, and only 5% could retain more than two thirds of their range. Projected changes to individual species ranges could be sufficient to detect climate change impacts within ten years. Main conclusions The biome‐level approach appears to underestimate the risk of species diversity loss from climate change impacts in the Fynbos Biome because many narrow range endemics suffer range dislocation throughout the biome, and not only in areas identified as biome contractions. We suggest that targeted vulnerable species could be monitored both for early warning signs of climate change and as empirical tests of predictions.  相似文献   

20.
Aim To determine the potential combined effects of climate change and land transformation on the modelled geographic ranges of Banksia. Location Mediterranean climate South West Australian Floristic Region (SWAFR). Methods We used the species distribution modelling software Maxent to relate current environmental conditions to occurrence data for 18 Banksia species, and subsequently made spatial predictions using two simple dispersal scenarios (zero and universal), for three climate‐severity scenarios at 2070, taking the impacts of land transformation on species’ ranges into account. The species were chosen to reflect the biogeography of Banksia in the SWAFR. Results Climate‐severity scenario, dispersal scenario, biogeographic distribution and land transformation all influenced the direction and magnitude of the modelled range change responses for the 18 species. The predominant response of species to all climate change scenarios was range contraction, with exceptions for some northern and widespread species. Including land transformation in estimates of modelled geographic range size for the three climate‐severity scenarios generally resulted in smaller gains and larger declines in species ranges across both dispersal scenarios. Including land transformation and assuming zero dispersal resulted, as expected, in the greatest declines in projected range size across all species. Increasing climate change severity greatly increased the risk of decline in the 18 Banksia species, indicating the critical role of mitigating future emissions. Main conclusions The combined effects of climate change and land transformation may have significant adverse impacts on endemic Proteaceae in the SWAFR, especially under high emissions scenarios and if, as expected, natural migration is limiting. Although these results need cautious interpretation in light of the many assumptions underlying the techniques used, the impacts identified warrant a clear focus on monitoring across species ranges to detect early signs of change, and experiments that determine physiological thresholds for species in order to validate and refine the models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号