首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marr DL  Pellmyr O 《Oecologia》2003,136(2):236-243
The long-term persistence of obligate mutualisms (over 40 Mya in both fig/fig wasps and yucca/yucca moths) raises the question of how one species limits exploitation by the other species, even though there is selection pressure on individuals to maximize fitness. In the case of yuccas, moths serve as the plant's only pollinator, but eggs laid by the moths before pollination hatch into larvae that consume seeds. Previous studies have shown that flowers with high egg loads are more likely to abscise. This suggests that yucca flowers can select against moths that lay many eggs per flower through selective abscission of flowers; however, it is not known how yucca moths trigger floral abscission. We tested how the moth Tegeticula yuccasella triggers floral abscission during oviposition in Yucca filamentosa by examining the effects of ovipositor insertion and egg laying on ovule viability and floral abscission. Eggs are not laid at the site of ovipositor insertion: we used this separation to test whether wounded ovules were more closely associated with the ovipositor site or an egg's location. Using a tetrazolium stain to detect injured ovules, we determined whether the number of ovipositions affected the number of wounded ovules in naturally pollinated flowers. Two wounding experiments were used to test the effect of mechanical damage on the probability of floral abscission. The types of wounds in these experiments mimicked two types of oviposition-superficial oviposition in the ovary wall and oviposition into the locular cavity-that have been observed in species of Tegeticula. The effect of moth eggs on ovule viability was experimentally tested by culturing ovules in vitro, placing moth eggs on the ovules, and measuring changes in ovule viability with a tetrazolium stain. We found that ovules were physically wounded during natural oviposition. Ovules showed a visible wounding response in moth-pollinated flowers collected 7-12 h after oviposition. Exact location of wounded ovules relative to eggs and oviposition scars, as well as results from the artificial wounding experiments, showed that the moth ovipositor inflicts mechanical damage on the ovules. Significantly higher abscission rates were observed in artificially wounded flowers in which only 4-8% of the ovules were injured. Eggs did not affect ovule viability as measured by the tetrazolium stain. These results suggest that physical damage to ovules caused by ovipositing is sufficient to explain selective fruit abscission. Whether injury as a mechanism of selective abscission in yuccas is novel or a preadaptation will require further study.  相似文献   

2.
Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.  相似文献   

3.
The interaction between yucca plants and yucca moths has been one of the focal model systems investigated in the study of pollination mutualism and coevolution, especially in terms of understanding the prevention of overexploitation by mutualist partners. Yuccas have the ability to assess the number of eggs placed by pollinators into their ovaries, and can preferentially abort those flowers that would have many moth larvae consuming yucca seeds. Previous phylogenetic research identified a rapid radiation of moth species that corresponded with shifts in the interaction with their host plants. These shifts led to the evolution of moth species that circumvent the egg detection method used by yuccas to limit seed damage. In particular, some pollinator species deposit their eggs so that they are undetectable by the plants, whereas other species are ‘cheaters’ that have lost the ability to pollinate, yet deposit eggs into developing fruit rather than flowers. The evolution of these new species happened so quickly that the phylogeny of the moths has remained unresolved despite repeated attempts with standard Sanger sequencing of mtDNA loci and AFLP marker generation. Here, we use extensive analyses of RAD‐seq data to determine the phylogenetic relationships among yucca moth species. The results provide a robust phylogenetic framework that identifies the evolutionary relationships among shifts in egg‐laying strategies, as well as determining the closest pollinating relatives to the cheater species. Based on the obtained phylogeny, a shift in egg‐laying strategy that avoided the overexploitation regulatory mechanism used by yucca plants was a precursor for the evolution of two species with cheating behaviour.  相似文献   

4.
Coevolution between flowering plants and their pollinators is thought to have generated much of the diversity of life on Earth, but the population processes that may have produced these macroevolutionary patterns remain unclear. Mathematical models of coevolution in obligate pollination mutualisms suggest that phenotype matching between plants and their pollinators can generate reproductive isolation. Here, we test this hypothesis using a natural experiment that examines the role of natural selection on phenotype matching between yuccas and yucca moths (Tegeticula spp.) in mediating reproductive isolation between two varieties of Joshua tree (Yucca brevifolia var. brevifolia and Y. brevifolia var. jaegeriana). Using passive monitoring techniques, DNA barcoding, microsatellite DNA genotyping, and sibship reconstruction, we track host specificity and the fitness consequences of host choice in a zone of sympatry. We show that the two moth species differ in their degree of host specificity and that oviposition on a foreign host plant results in the production of fewer offspring. This difference in host specificity between the two moth species mirrors patterns of chloroplast introgression from west to east between host varieties, suggesting that natural selection acting on pollinator phenotypes mediates gene flow and reproductive isolation between Joshua‐tree varieties.  相似文献   

5.
The pollination mutualism between yucca moths and yuccas highlights the potential importance of host plant specificity in insect diversification. Historically, one pollinator moth species, Tegeticula yuccasella, was believed to pollinate most yuccas. Recent phylogenetic studies have revealed that it is a complex of at least 13 distinct species, eight of which are specific to one yucca species. Moths in the closely related genus Prodoxus also specialize on yuccas, but they do not pollinate and their larvae feed on different plant parts. Previous research demonstrated that the geographically widespread Prodoxus quinquepunctellus can rapidly specialize to its host plants and may harbor hidden species diversity. We examined the phylogeographic structure of P. quinquepunctellus across its range to compare patterns of diversification with six coexisting pollinator yucca moth species. Morphometric and mtDNA cytochrome oxidase I sequence data indicated that P. quinquepunctellus as currently described contains two species. There was a deep division between moth populations in the eastern and the western United States, with limited sympatry in central Texas; these clades are considered separate species and are redescribed as P. decipiens and P. quinquepunctellus (sensu stricto), respectively. Sequence data also showed a lesser division within P. quinquepunctellus s.s. between the western populations on the Colorado Plateau and those elsewhere. The divergence among the three emerging lineages corresponded with major biogeographic provinces, whereas AMOVA indicated that host plant specialization has been relatively unimportant in diversification. In comparison, the six pollinator species comprise three lineages, one eastern and two western. A pollinator species endemic to the Colorado Plateau has evolved in both of the western lineages. The east-west division and the separate evolution of two Colorado Plateau pollinator species suggest that similar biogeographic factors have influenced diversification in both Tegeticula and Prodoxus. For the pollinators, however, each lineage has produced a monophagous species, a pattern not seen in P. quinquepunctellus.  相似文献   

6.
Abstract 1. A major question in the study of mutualism is to understand how mutualists may revert to antagonists that exploit the mutualism (i.e. switch to cheating). In the classic pollination mutualism between yuccas and yucca moths, the cheater moth Tegeticula intermedia is sister to the pollinator moth T. cassandra. These moth species have similar ovipositor morphology, but T. intermedia emerges later, oviposits into fruit rather than flowers, and does not pollinate. 2. We tested if the pollinator, T. cassandra, was pre‐adapted to evolve a cheater lineage by comparing its emergence and oviposition behaviour on yucca fruit to a distantly related pollinator, T. yuccasella, that differs in ovipositor morphology and oviposition behaviour. We predicted that if T. cassandra was pre‐adapted to cheat, then these pollinators would emerge later and be able to oviposit into fruit in contrast to T. yuccasella. 3. Contrary to expectations, a common garden‐rearing experiment demonstrated that emergence of T. cassandra was not significantly delayed relative to T. yuccasella. Moth emergence patterns overlapped broadly. 4. No choice oviposition experiments with female moths demonstrated that both pollinator species attempted to oviposit into fruit, but only T. cassandra was successful. Four out of 84 T. cassandra successfully oviposited into older fruit, whereas zero out of 79 T. yuccasella oviposited into older fruit. The rarity of the cheating behaviour in pollinators, however, meant that no significant difference in oviposition ability was detected. 5. The results suggest that a shift in emergence phenology is likely not a pre‐adaptation to the evolution of cheating, but that the ability to successfully lay eggs into fruit may be. The results also demonstrate that cheating attempts are rare in these pollinator species and, hence, the evolutionary transition rate from pollinator to cheater is likely to be low.  相似文献   

7.
Host specialization is an important mechanism of diversification among phytophagous insects, especially when they are tightly associated with their hosts. The well-known obligate pollination mutualism between yucca moths and yuccas represent such an association, but the degree of host specificity and modes of specialization in moth evolution is unclear. Here we use molecular tools to test the morphology-based hypothesis that the moths pollinating two yuccas, Yucca baccata and Y. schidigera, are distinct species. Host specificity was assessed in a zone of sympatry where the hosts are known to hybridize. Because the moths are the only pollinators, the plant hybrids are evidence that the moths occasionally perform heterospecific pollination. Nucleotide variation was assessed in a portion of the mitochondrial gene COI, and in an intron within a nuclear lysozyme gene. Moths pollinating Y. baccata and Y. schidigera were inferred to be genetically isolated because there was no overlap in alleles at either locus, and all but one of the moths was found on their native host in the hybrid zone. Moreover, genetic structure was very weak across the range of each moth species: estimates of FST for the lysozyme intron were 0.043 (SE = ± 0.004) and 0.021 (SE = ± 0.006) for the baccata and schidigera pollinators, respectively; estimated FST for COI in the baccata moths was 0.228 (± 0.012), whereas schidigera pollinators were fixed for a single allele. These results reveal a high level of migration among widely separated moth populations. We predict that pollen-mediated gene flow among conspecific yuccas is considerable and hypothesize that geographic separation is a limited barrier both for yuccas and for yucca moths.  相似文献   

8.
The interaction between yuccas and yucca moths has been central to understanding the origin and loss of obligate mutualism and mutualism reversal. Previous systematic research using mtDNA sequence data and characters associated with genitalic morphology revealed that a widespread pollinator species in the genus Tegeticula was in fact a complex of pollinator species that differed in host use and the placement of eggs into yucca flowers. Within this mutualistic clade two nonpollinating "cheater" species evolved. Cheaters feed on yucca seeds but lack the tentacular mouthparts necessary for yucca pollination. Previous work suggested that the species complex formed via a rapid radiation within the last several million years. In this study, we use an expanded mtDNA sequence data set and AFLP markers to examine the phylogenetic relationships among this rapidly diverging clade of moths and compare these relationships to patterns in genitalic morphology. Topologies obtained from analyses of the mtDNA and AFLP data differed significantly. Both data sets, however, corroborated the hypothesis of a rapid species radiation and suggested that there were likely two independent species radiations. Morphological analyses based on oviposition habit produced species groupings more similar to the AFLP topology than the mtDNA topology and suggested the two radiations coincided with differences in oviposition habit. The evolution of cheating was reaffirmed to have evolved twice and the closest pollinating relative for one cheater species was identified by both mtDNA and AFLP markers. For the other cheater species, however, the closest pollinating relative remains ambiguous, and mtDNA, AFLP, and morphological data suggest this cheater species may be diverged based on host use. Much of the divergence in the species complex can be explained by geographic isolation associated with the evolution of two oviposition habits.  相似文献   

9.
Althoff DM  Segraves KA  Sparks JP 《Oecologia》2004,140(2):321-327
Yucca moths are most well known for their obligate pollination mutualism with yuccas, where pollinator moths provide yuccas with pollen and, in exchange, the moth larvae feed on a subset of the developing yucca seeds. The pollinators, however, comprise only two of the three genera of yucca moths. Members of the third genus, Prodoxus, are the bogus yucca moths and are sister to the pollinator moths. Adult Prodoxus lack the specialized mouthparts used for pollination and the larvae feed on plant tissues other than seeds. Prodoxus larvae feed within the same plants as pollinator larvae and have the potential to influence yucca reproductive success directly by drawing resources away from flowers and fruit, or indirectly by modifying the costs of the mutualism with pollinators. We examined the interaction between the scape-feeding bogus yucca moth, Prodoxus decipiens, and one of its yucca hosts, Yucca filamentosa, by comparing female reproductive success of plants with and without moth larvae. We determined reproductive success by measuring a set of common reproductive traits such as flowering characteristics, seed set, and seed germination. In addition, we also quantified the percent total nitrogen in the seeds to determine whether the presence of larvae could potentially reduce seed quality. Flowering characteristics, seed set, and seed germination were not significantly different between plants with and without bogus yucca moth larvae. In contrast, the percent total nitrogen content of seeds was significantly lower in plants with P. decipiens larvae, and nitrogen content was negatively correlated with the number of larvae feeding within the inflorescence scape. Surveys of percent total nitrogen at three time periods during the flowering and fruiting of Y. filamentosa also showed that larval feeding decreased the amount of nitrogen in fruit tissue. Taken together, the results suggest that although P. decipiens influences nitrogen distribution in Y. filamentosa, this physiological effect does not appear to impact the female components of reproductive success.  相似文献   

10.
Re-evaluating the role of selective abscission in moth/yucca mutualisms   总被引:3,自引:0,他引:3  
Conflicts of interest are common to mutualisms, particularly those derived from exploitative interactions. Conflicts of interest are particularly pronounced in pollination/seed predation mutualisms, such as moth/yucca interactions, where consumption of seeds by larvae of a plant's pollinator will raise the fitness of the pollinator but lower the fitness of the plant. A central question in these mutualisms is, therefore, “what limits seed predation?” If plants with excess flowers selectively abscise flowers containing many eggs, they may reduce seed predation and overall increase their fecundity. If eggs in abscised flowers die, selective abscission may additionally contribute to the limitation or regulation of pollinator populations, thereby decreasing the probability of future overexploitation. We examined the effect of selective abscission in the mutualism between Yucca kanabensis and one of its pollinating moths, Tegeticula altiplanella. Per capita mortality of moth eggs due to abscission was high (95.5%), but did not increase on inflorescences with more ovipositions per flower. Overall mortality was partitioned into two components based upon the proportion of visited flowers abscised (i.e. resource‐limitation) and additional mortality (=selective abscission). Resource‐limitation per se inflicted 93.9% egg mortality, or most of the mortality due to abscission. But, the average number of eggs in fruit was lower than the average number of eggs in flowers, indicating that there was some selectivity of abscission. However, neither source of mortality increased on inflorescences with more ovipositions per visited flower. Egg mortality resulting from selective abscission was not as high as possible, because the yuccas appeared to use oviposition‐damaged ovules as a cue for selective abscission, and there was considerable variation in the relationship between oviposition number and damaged ovules. However, even if yuccas had retained the flowers containing the fewest eggs, selective abscission still would not have been higher on inflorescences with more ovipositions per flower. Considering also that, 1) number of ovipositions is a poor predictor of the number of larvae that hatch and feed on the developing seeds in a fruit and that, 2) there are several moth/yucca interactions in which selective abscission does not occur, we conclude that abscission, and particular selective abscission, may have density‐limiting effects on moth populations, but will fail as general explanations for regulating the dynamics of moth populations.  相似文献   

11.
Abstract.  1. Although the moth–yucca mutualism is often studied as a pairwise interaction, yucca plants are also the sole host for a variety of other visitors. One of these additional visitors is a stem-boring moth, Prodoxus quinquepunctellus.
2. In this study, it is shown how the reproductive success of Prodoxus indirectly depends on the interactions between yuccas and their pollinators ( Tegeticula , Prodoxidae) as well as the indirect effects of ants and aphids.
3. Aggressive wood ants foraging on yuccas will attack adult Prodoxus moths while attempting to oviposit. This reduces the number of eggs laid in yucca stalks, leading to fewer larvae feeding in the stalks.
4. Once in the stalk, the survival of Prodoxus eggs/larvae depends upon the rate at which the flowering stalks dry out during fruit maturation. Portions of the stalk above the highest fruit dry out quickly and survivorship approaches zero in these dry sections, while larvae in green sections of the flowering stalk have significantly higher survival rates. The presence of aphids feeding on the stalk slows down the rate of stalk drying and could lead to increased survival of Prodoxus larvae.
5. Overall, ants have strong indirect effects on P. quinquepunctellus by controlling how many eggs are laid in the stalk and by influencing the distribution of aphids. However, it is primarily the presence and position of the fruit that can affect larval survivorship, and fruit position is a function of pollinator visits and resource limitation. These complex interactions illustrate the importance of studying the yucca–moth mutualism in a community context.  相似文献   

12.
The determinants of a species' geographic distribution are a combination of both abiotic and biotic factors. Environmental niche modeling of climatic factors has been instrumental in documenting the role of abiotic factors in a species' niche. Integrating this approach with data from species interactions provides a means to assess the relative roles of abiotic and biotic components. Here, we examine whether the high host specificity typically exhibited in the active pollination mutualism between yuccas and yucca moths is the result of differences in climatic niche requirements that limit yucca moth distributions or the result of competition among mutualistic moths that would co‐occur on the same yucca species. We compared the species distribution models of two Tegeticula pollinator moths that use the geographically widespread plant Yucca filamentosa. Tegeticula yuccasella occurs throughout eastern North America whereas T. cassandra is restricted to the southeastern portion of the range, primarily occurring in Florida. Species distribution models demonstrate that T. cassandra is restricted climatically to the southeastern United States and T. yuccasella is predicted to be able to live across all of eastern North America. Data on moth abundances in Florida demonstrate that both moth species are present on Y. filamentosa; however, T. cassandra is numerically dominant. Taken together, the results suggest that moth geographic distributions are heavily influenced by climate, but competition among pollinating congeners will act to restrict populations of moth species that co‐occur.  相似文献   

13.
We investigated pollen dispersal in an obligate pollination mutualism between Yucca filamentosa and Tegeticula yuccasella. Yucca moths are the only documented pollinator of yuccas, and moth larvae feed solely on developing yucca seeds. The quality of pollination by a female moth affects larval survival because flowers receiving small amounts of pollen or self-pollen have a high abscission probability, and larvae die in abscised flowers. We tested the prediction that yucca moths primarily perform outcross pollinations by using fluorescent dye to track pollen dispersal in five populations of Y. filamentosa. Dye transfers within plants were common in all populations (mean ± 1 SE, 55 ± 3.0%), indicating that moths frequently deposit self-pollen. Distance of dye transfers ranged from 0 to 50 m, and the mean number of flowering plants between the pollen donor and recipient was 5 (median = 0), suggesting that most pollen was transferred among near neighbors. A multilocus genetic estimate of outcrossing based on seedlings matured from open-pollinated fruits at one site was 94 ± 6% (mean ± 1 SD). We discuss why moths frequently deposit self-pollen to the detriment of their offspring and compare the yucca-yucca moth interaction with other obligate pollinator mutualisms in which neither pollinator nor plant benefit from self-pollination.  相似文献   

14.
In pollination–seed predation mutualisms between yuccas and yucca moths, conflicts of interest exist for yuccas, because benefits of increased pollination may be outweighed by increased seed consumption. These conflicts raise the problem of what limits seed consumption, and ultimately what limits or regulates moth populations. Although the current hypothesis is that yuccas should selectively abscise flowers with high numbers of yucca-moth eggs, within-inflorescence selective abscission occurs in only one of the three moth–yucca systems that we studied. It occurs only when oviposition directly damages developing ovules, and does not, therefore, provide a general explanation for the resolution of moth–yucca conflicts. Within-locule egg mortality provides an alternative and stronger mechanism for limiting seed damage, and generating density-dependent mortality for yucca-moth populations. However, the most important feature of moth–yucca systems is that they are diverse, encompassing multiple modes of interaction, each with different consequences for limiting and regulating yucca moths.  相似文献   

15.
Coevolved mutualisms, such as those between senita cacti, yuccas, and their respective obligate pollinators, benefit both species involved in the interaction. However, in these pollination mutualisms the pollinator's larvae impose a cost on plants through consumption of developing seeds and fruit. The effects of pollinators on benefits and costs are expected to vary with the abundance of pollinators, because large population sizes result in more eggs and larval seed-eaters. Here, we develop the hypothesis that fruit abortion, which is common in yucca, senita, and plants in general, could in some cases have the function of limiting pollinator abundance and, thereby, increasing fruit production. Using a general steady-state model of fruit production and pollinator dynamics, we demonstrate that plants involved in pollinating seed-eater mutualisms can increase their fecundity by randomly aborting fruit. We show that the ecological conditions under which fruit abortion can improve plants fecundity are not unusual. They are best met when the plant is long-lived, the population dynamics of the pollinator are much faster than those of the plant, the loss of one fruit via abortion kills a larva that would have the expectation of destroying more than one fruit through its future egg laying as an adult moth, and the effects of fruit abortion on pollinator abundance are spatially localized. We then use the approach of adaptive dynamics to find conditions under which a fruit abortion strategy based on regulating the pollinator population could feasibly evolve in this type of plant-pollinator interaction.  相似文献   

16.
The phoretic relationship between the egg parasitoidTelenomus sp. cf.euproctidis Wilcox and its host the tussock mothEuproctis taiwana was studied in Okinawa, Japan. One third of the female moths studied in the field carried female parasitoid adults. No male moths carried parasitoids. Parasitoids were observed only in the anal tuft of the moth. Laboratory observation revealed that most of the parasitoids left the body of the moth at the time of the first oviposition of their host and proceeded to lay eggs on the moth egg masses.  相似文献   

17.
Abstract:  We studied the mating selection in the cotton bollworm, Helicoverpa armigera (Hübner), in relation to body size and larval diet in the laboratory. When provided with an artificial diet at larval stage, weight, body and forewing length did not affect the probability of a male/female moth being selected for mating, but the abdominal width of selected female moths was significantly wider than that of non-selected female moths. 30 female moths were dissected and number of eggs was counted after mating, and there was a correlation between the abdominal width and egg number. There was also significant difference of weight loss between selected and non-selected male/female moths after the mating. The effect of operational sex ratio on mating latency and copulation duration were tested, and the result indicated that mating latency of male selection was significantly longer than that of female selection, but the difference of copulation duration was not significant. Cotton, corn and peanut plants were provided to larvae to test the effect of larval host plant experience on mate choice. When cotton- and peanut-fed moth severed as potential partners, both female and male of cotton-fed moths significantly preferred cotton- to peanut-fed moths for mating. The possible reasons for mate preference based on larval host plant experience may account for host plants attributes on sex pheromone variation and sexual maturity. These findings may impact Bacillus thuringiensis resistance management.  相似文献   

18.
Plant and surrogate stems exhibiting specific combinations of physical cues were used to determine which plant‐related stimuli influence the oviposition of Busseola fusca (Fuller) (Lepidoptera: Noctuidae). The number of eggs and egg batches laid per female increased with an increase in diameter of both natural and artificial stems. Direct observations of the oviposition behaviour (walking, antennating, and sweeping with the ovipositor) indicated that the female moths preferred oviposition supports with a large diameter and non‐pubescent or smooth surfaces over pubescent or rough ones. Pubescence and rough surfaces significantly affected the behavioural steps leading to oviposition by interfering with the ovipositor sweep process necessary to find a suitable oviposition site. Furthermore, more eggs and egg batches were laid on soft than rigid supports. The rigidity of the support affected the proper insertion of the ovipositor for egg deposition. Our results underline the importance of physical stimuli in B. fusca's choice of an oviposition site, which may facilitate the identification of potential host plants or preferred oviposition sites on a plant for this species.  相似文献   

19.
The size of some Trichogramma spp. adults and especially the ovipositor length depends on the species, but is also related to the host species and to the number of parasitoids per host. The length is greater in T. evanescens than in T. pretiosum itself greater than in T. exiguum, but the width is similar in the three species. For T. evanescens, the size obtained in Mamestra brassicae host when three or four insects emerged is similar to that obtained in Ephestia kuehniella host when singly parasitized. The size of the ovipositor is important because it may influence the possibility of in vitro egg laying in artificial host eggs. A shorter or a narrower ovipositor could cause difficulties in egg-laying into artificial host eggs composed of a membrane of unsuitable thickness.  相似文献   

20.
1. When considering intercropping as a strategy to reduce pest oviposition, knowledge about the insect’s oviposition behaviour is very important. Physiological effects on the insect because of difficulties in finding a suitable oviposition site may also be important. 2. In the present study, the effects that delays in access to host plants have on lifetime fecundity on diamondback moth and leek moth were examined. The ability to postpone egg laying, fecundity and lifetime oviposition are discussed in relation to intercrop/cover crop as a strategy to reduce oviposition on crop plants. 3. When faced with host plant deprivation, the diamondback moth is relatively more dependent upon host plant stimuli for the onset of egg production. By contrast, leek moth is able to postpone egg production for a longer time. There even appeared to be a tendency for leek moth females to extend their lifetime when faced with host plant deprivation. 4. We conclude that leek moths have the ability to postpone production of eggs and lay them later in life when finally encountering host plants after a period of host plant deprivation. Therefore, the use of intercropping as a strategy to reduce oviposition is questionable. For such an insect, use of a trap crop might be a better option because the female will lay her eggs in the trap crop and not get the opportunity to lay them later in life when finally encountering crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号