首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vertebrates possess diverse sex‐determining systems, which differ in evolutionary stability among particular groups. It has been suggested that poikilotherms possess more frequent turnovers of sex chromosomes than homoiotherms, whose effective thermoregulation can prevent the emergence of the sex reversals induced by environmental temperature. Squamate reptiles used to be regarded as a group with an extensive variability in sex determination; however, we document how the rather old radiation of lizards from the genus Anolis, known for exceptional ecomorphological variability, was connected with stability in sex chromosomes. We found that 18 tested species, representing most of the phylogenetic diversity of the genus, share the gene content of their X chromosomes. Furthermore, we discovered homologous sex chromosomes in species of two genera (Sceloporus and Petrosaurus) from the family Phrynosomatidae, serving here as an outgroup to Anolis. We can conclude that the origin of sex chromosomes within iguanas largely predates the Anolis radiation and that the sex chromosomes of iguanas remained conserved for a significant part of their evolutionary history. Next to therian mammals and birds, Anolis lizards therefore represent another adaptively radiated amniote clade with conserved sex chromosomes. We argue that the evolutionary stability of sex‐determining systems may reflect an advanced stage of differentiation of sex chromosomes rather than thermoregulation strategy.  相似文献   

2.
Sex chromosomes undergo rapid turnover in certain taxonomic groups. One of the mechanisms of sex chromosome turnover involves fusions between sex chromosomes and autosomes. Sexual antagonism, heterozygote advantage, and genetic drift have been proposed as the drivers for the fixation of this evolutionary event. However, all empirical patterns of the prevalence of multiple sex chromosome systems across different taxa cannot be simply explained by these three mechanisms. In this study, we propose that female meiotic drive may contribute to the evolution of neo‐sex chromosomes. The results of this study showed that in mammals, the XY1Y2 sex chromosome system is more prevalent in species with karyotypes of more biarmed chromosomes, whereas the X1X2Y sex chromosome system is more prevalent in species with predominantly acrocentric chromosomes. In species where biarmed chromosomes are favored by female meiotic drive, X‐autosome fusions (XY1Y2 sex chromosome system) will be also favored by female meiotic drive. In contrast, in species with more acrocentric chromosomes, Y‐autosome fusions (X1X2Y sex chromosome system) will be favored just because of the biased mutation rate toward chromosomal fusions. Further consideration should be given to female meiotic drive as a mechanism in the fixation of neo‐sex chromosomes.  相似文献   

3.
We show that the recombination rate between the sex chromosomes is controlled by phenotypic, rather than genotypic, sex in sex‐reversed common frogs. This supports the recent hypothesis that in ectothermic vertebrates sex reversal can prevent the progressive accumulation of mutations to nonrecombining Y chromosomes and their subsequent evolutionary decay.  相似文献   

4.
Sex differences in the mean trait expression are well documented, not only for traits that are directly associated with reproduction. Less is known about how the variability of traits differs between males and females. In species with sex chromosomes and dosage compensation, the heterogametic sex is expected to show larger trait variability (“sex‐chromosome hypothesis”), yet this central prediction, based on fundamental genetic principles, has never been evaluated in detail. Here we show that in species with heterogametic males, male variability in body size is significantly larger than in females, whereas the opposite can be shown for species with heterogametic females. These results support the prediction of the sex‐chromosome hypothesis that individuals of the heterogametic sex should be more variable. We argue that the pattern demonstrated here for sex‐specific body size variability is likely to apply to any trait and needs to be considered when testing predictions about sex‐specific variability and sexual selection.  相似文献   

5.
Comparative genomic studies are revealing that, in sharp contrast with the strong stability found in birds and mammals, sex determination mechanisms are surprisingly labile in cold‐blooded vertebrates, with frequent transitions between different pairs of sex chromosomes. It was recently suggested that, in context of this high turnover, some chromosome pairs might be more likely than others to be co‐opted as sex chromosomes. Empirical support, however, is still very limited. Here we show that sex‐linked markers from three highly divergent groups of anurans map to Xenopus tropicalis scaffold 1, a large part of which is homologous to the avian sex chromosome. Accordingly, the bird sex determination gene DMRT1, known to play a key role in sex differentiation across many animal lineages, is sex linked in all three groups. Our data provide strong support for the idea that some chromosome pairs are more likely than others to be co‐opted as sex chromosomes because they harbor key genes from the sex determination pathway.  相似文献   

6.
通过幼胚培养和秋水仙碱处理,人工合成了具有一对双随体染色体的硬粒小麦——簇毛麦双二倍体(AABBVV)。根尖细胞染色体数目2n=42;花粉母细胞减数分裂中期Ⅰ,2n=21″的细胞占69.94%,染色体构型为1.0′+20.47″+0.02。天然和自交结实率分别为49.07%和39.23%。籽粒蛋白质含量为20.98%。抗白粉、条锈、叶锈和赤霉病。  相似文献   

7.
We compared the patterns of movement of sex chromosomal and autosomal loci along a 160 km transect across a zone of hybridization between M. domesticus and M. musculus in southern Germany and western Austria using seven genetic markers. These included one Y-specific DNA sequence (YB10), two X-specific loci (DXWas68 and DXWas31), and four autosomal isozyme loci (Es-10, Es-1, Mpi-1, and Np-1). Random effects logistic regression analysis enabled us to examine the relationship between M. domesticus allele frequency and geographic distance from the western edge of the hybrid zone and allowed statistical evaluation of differences in cline midpoint and width among loci. More limited movement was observed for all three sex chromosomal markers across the zone compared with three of the four autosomal markers. If differential movement reflects fitness differences of specific alleles (or alleles at closely linked loci) on a hybrid background, then alleles that move to a limited extent across a hybrid zone may contribute to hybrid breakdown between two species. The limited flow of both X- and Y-specific alleles suggest that sex chromosomes have played an important role in Mus speciation.  相似文献   

8.
Size of canine teeth from California sea lion ( Zalophus californianus californianus ) carcasses is shown to be useful in determining the sex of animals which have missing genitalia or which are otherwise of unknown sex. A total of 267 canine teeth from carcasses of 68 males and 43 females were measured along five axes. Of root and crown measurements of upper and lower canines, males and females overlapped only in root thickness of upper canines. A multivariate ANOVA showed a significant difference in the size of canines between upper and lower canines, and between males and females. Stepwise discriminant analysis produced discriminant functions for upper and lower canines for determining sex of unknown-sexed California sea lions. A separate set of canine teeth from 39 male and 49 female California sea lions was correctly classified without prior knowledge of sex by visual inspection and by the two discriminant functions.  相似文献   

9.
《Current biology : CB》2021,31(21):4800-4809.e9
  1. Download : Download high-res image (219KB)
  2. Download : Download full-size image
  相似文献   

10.
All therian mammals have a similar XY/XX sex‐determination system except for a dozen species. The African pygmy mouse, Mus minutoides, harbors an unconventional system in which all males are XY, and there are three types of females: the usual XX but also XX* and X*Y ones (the asterisk designates a sex‐reversal mutation on the X chromosome). The long‐term evolution of such a system is a paradox, because X*Y females are expected to face high reproductive costs (e.g., meiotic disruption and loss of unviable YY embryos), which should prevent invasion and maintenance of a sex‐reversal mutation. Hence, mechanisms for compensating for the costs could have evolved in M. minutoides. Data gathered from our laboratory colony revealed that X*Y females do compensate and even show enhanced reproductive performance in comparison to the XX and XX*; they produce significantly more offspring due to (i) a higher probability of breeding, (ii) an earlier first litter, and (iii) a larger litter size, linked to (iv) a greater ovulation rate. These findings confirm that rare conditions are needed for an atypical sex‐determination mechanism to evolve in mammals, and provide valuable insight into understanding modifications of systems with highly heteromorphic sex chromosomes.  相似文献   

11.
本文描述了云南乌头属一个新种,即土官村乌头Aconitum tuguancunense Q.E.Yang,并对其B染色体进行了观察,发现其B染色体数目不但在同一居群的不同植株间有变化,即使在同一植株中也不稳定。  相似文献   

12.
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.  相似文献   

13.
Background: The currently available methods for sexing human or mouse cells have weaknesses. Therefore, it is necessary to establish new methods.Methods: We used bioinformatics approach to identify genes that have alleles on both the X and Y chromosomes of mouse and human genomes and have a region showing a significant difference between the X and Y alleles. We then used polymerase chain reactions (PCR) followed by visualization of the PCR amplicons in agarose gels to establish these genomic regions as genetic sex markers.Results: Our bioinformatics analyses identified eight mouse sex markers and 56 human sex markers that are new, i.e. are previously unreported. Six of the eight mouse markers and 14 of the 56 human markers were verified using PCR and ensuing visualization of the PCR amplicons in agarose gels. Most of the tested and untested sex markers possess significant differences in the molecular weight between the X- and Y-derived PCR amplicons and are thus much better than most, if not all, previously-reported genetic sex markers. We also established several simple and essentially cost-free methods for extraction of crude genomic DNA from cultured cells, blood samples, and tissues that could be used as template for PCR amplification.Conclusion: We have established new sex genetic markers and methods for extracting genomic DNA and for sexing human and mouse cells. Our work may also lend some methodological strategies to the identification of new genetic sex markers for other organismal species.  相似文献   

14.
Horabin JI 《Fly》2012,6(1):26-29
Equalizing sex chromosome expression between the sexes when they have largely differing gene content appears to be necessary, and across species, is accomplished in a variety of ways. Even in birds, where the process is less than complete, a mechanism to reduce the difference in gene dose between the sexes exists. In early development, while the dosage difference is unregulated and still in flux, it is frequently exploited by sex determination mechanisms. The Drosophila female sex determination process is one clear example, determining the sexes based on X chromosome dose. Recent data show that in Drosophila, the female sex not only reads this gene balance difference, but at the same time usurps the moment. Taking advantage of the transient default state of male dosage compensation, the sex determination master-switch Sex-lethal which resides on the X, has its expression levels enhanced before it works to correct the gene imbalance. Intriguingly, key developmental genes which could create developmental havoc if their levels were unbalanced show more exquisite regulation, suggesting nature distinguishes them and ensures their expression is kept in the desirable range.  相似文献   

15.
《Fly》2013,7(1):26-29
One of the key aspects of functional nervous systems is the restriction of particular neural subtypes to specific regions, which permits the establishment of differential segment-specific neuromuscular networks. Although Hox genes play a major role in shaping the anterior-posterior body axis during animal development, our understanding of how they act in individual cells to determine particular traits at precise developmental stages is rudimentary. We have used the abdominal leucokinergic neurons (ABLKs) to address this issue. These neurons are generated during both embryonic and postembryonic neurogenesis by the same progenitor neuroblast, and are designated embryonic and postembryonic ABLKs, respectively. We report that the genes of the Bithorax-Complex, Ultrabithorax (Ubx) and abdominal-A (abd-A) are redundantly required to specify the embryonic ABLKs. Moreover, the segment-specific pattern of the postembryonic ABLKs, which are restricted to the most anterior abdominal segments, is controlled by the absence of Abdominal-B (Abd-B), which we found was able to repress the expression of the neuropeptide leucokinin. We discuss this and other examples of how Hox genes generate diversity within the central nervous system of Drosophila.  相似文献   

16.
The size advantage hypothesis (SAH) predicts that the rate of increase in male and female fitness with size (the size advantage) drives the evolution of sequential hermaphroditism or sex change. Despite qualitative agreement between empirical patterns and SAH, only one comparative study tested SAH quantitatively. Here, we perform the first comparative analysis of sex change in Labridae, a group of hermaphroditic and dioecious (non–sex changer) fish with several model sex‐changing species. We also estimate, for the first time, rates of evolutionary transitions between sex change and dioecy. Our analyses support SAH and indicate that the evolution of hermaphroditism is correlated to the size advantage. Furthermore, we find that transitions from sex change to dioecy are less likely under stronger size advantage. We cannot determine, however, how the size advantage affects transitions from dioecy to sex change. Finally, contrary to what is generally expected, we find that transitions from dioecy to sex change are more likely than transitions from sex change to dioecy. The similarity of sexual differentiation in hermaphroditic and dioecious labrids might underlie this pattern. We suggest that elucidating the developmental basis of sex change is critical to predict and explain patterns of the evolutionary history of sequential hermaphroditism.  相似文献   

17.
Homozygous mt?/mt? diploid clones of the Closterium ehrenbergii Menegh. ex Ralfs species complex were obtained by hypertonic treatment from minus vegetative cells, and mating type segregation ratios in the F1 progeny of “triploid” zygospores between wild type mt+ haploid and mt?/mt? homozygous diploui were analyzed. The ratio of plus to minus individuals was 1:4.8, and the ratio of the pairs of opposite mating types to those of minus mating type was 1:2.1. The results clearly show that mt? is dominant to mt+ and that the mating type inheritance in these zygospores follows the triploid-like pattern. The validity of our assumption that the two mating types are determined by one genetic factor (mt? allele dominant) was confirmed in B1 progeny analyses as well. The results suggest that this sex determining mechanism is working effectively in the C. ehrenbergii species complex, in which several biological species have evolved through polyploidization.  相似文献   

18.
Trisomy X, the presence of an extra X chromosome in females (47,XXX), is a relatively common but under‐recognized chromosomal disorder associated with characteristic cognitive and behavioral features of varying severity. The objective of this study was to determine whether there were neuroanatomical differences in girls with Trisomy X that could relate to cognitive and behavioral differences characteristic of the disorder during childhood and adolescence. MRI scans were obtained on 35 girls with Trisomy X (mean age 11.4, SD 5.5) and 70 age‐ and sex‐matched healthy controls. Cognitive and behavioral testing was also performed. Trisomy X girls underwent a semi‐structured psychiatric interview. Regional brain volumes and cortical thickness were compared between the two groups. Total brain volume was significantly decreased in subjects with Trisomy X, as were all regional volumes with the exception of parietal gray matter. Differences in cortical thickness had a mixed pattern. The subjects with Trisomy X had thicker cortex in bilateral medial prefrontal cortex and right medial temporal lobe, but decreased cortical thickness in both lateral temporal lobes. The most common psychiatric disorders present in this sample of Trisomy X girls included anxiety disorders (40%), attention‐deficit disorder (17%) and depressive disorders (11%). The most strongly affected brain regions are consistent with phenotypic characteristics such as language delay, poor executive function and heightened anxiety previously described in population‐based studies of Trisomy X and also found in our sample.  相似文献   

19.
Abstract.— Although natural populations of most species exhibit a 1:1 sex ratio, biased sex ratios are known to be associated with non‐Mendelian inheritance, as in sex‐linked meiotic drive and cytoplasmic inheritance (Charnov 1982; Hurst 1993). We show how cultural inheritance, another type of non‐Mendelian inheritance, can favor skewed primary sex ratios and propose that it may explain the female‐biased sex ratios commonly observed in reptiles with environmental sex determination (ESD). Like cytoplasmic elements, cultural traits can be inherited through one sex. This, in turn, favors skewing the primary sex allocation in favor of the transmitting sex. Female nest‐site philopatry is a sex‐specific, culturally inherited trait in many reptiles with ESD and highly female‐biased sex ratios. We propose that the association of nest‐site selection with ESD facilitates the maternal manipulation of offspring sex ratios toward females.  相似文献   

20.
Sex determination in the mammalian embryo begins with the activation of a gene on the Y chromosome which triggers a cascade of events that lead to male development. The mechanism by which this gene, designated SRY in humans and Sry in mice (sex determining region of the Y chromosome), is activated remains unknown. Likewise, the downstream target genes for Sry remain unidentified at present. C57BL mice carrying a Y chromosome from Mus musculus musculus or molossinus develop normally as males. In contrast, C57BL/6 mice with the Y chromosome from M. m. domesticus often show sex reversal, i.e., develop as XY females. It has been documented that C57BL mice with the Y chromosome from Poschiavinus (YPOS), a domesticus subtype, always develop as females or hermaphrodites. This suggests that a C57BL gene either up- or downstream of Sry is ineffective in interacting with Sry, which then compromises the processes that lead to normal male sex development. Nonetheless, by selective breeding, we have been able to generate a sex reversal-resistant C57BL/6-congenic strain of mice in which the XYPOS individuals consistently develop as normal males with bilateral testes. Because the resistance to sex reversal was transferred from strain 129S1/Sv (nonalbino) by simple selection over 13 backcross generations, it is inferred that a single autosomal gene or chromosomal region confers resistance to the sex reversal that would otherwise result. XYPOS normal males generated in these crosses were compared to XYPOS abnormal individuals and to C57BL/6 controls for sexual phenotype, gonadal weight, serum testosterone, and major urinary protein (MUP) level. A clear correlation was found among phenotypic sex, MUP level, and testis weight in the males and in the incompletely masculinized XYPOS mice. The fully masculinized males of the congenic strain resemble C57BL/6 males in the tested parameters. DNA analysis confirmed that these males, in fact, carry the YPOS Sry gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号