首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Inbreeding depression is thought to be a major factor affecting the evolution of mating systems and dispersal. While there is ample evidence for inbreeding depression in captivity, it has rarely been documented in natural populations. In this study, I examine data from a long-term demographic study of an insular population of song sparrows (Melospiza melodia) and present evidence for inbreeding depression. Forty-four percent of all matings on Mandarte Island, British Columbia, were among known relatives. Offspring of a full-sib mating (f = 0.25) experienced a reduction in annual survival rate of 17.5% on average. Over their lifetime, females with f = 0.25 produced 48% fewer young that reached independence from parental care. In contrast, male lifetime reproductive success was not affected by inbreeding. Reduced female lifetime reproductive success was mostly due to reduced hatching rates of the eggs of inbred females. Relatedness among the parents did not affect their reproductive success. Using data on survival from egg stage to breeding age, I estimated the average song sparrow egg on Mandarte Island to carry a minimum of 5.38 lethal equivalents (the number of deleterious genes whose cumulative effect is equivalent to one lethal); 2.88 of these lethal equivalents were expressed from egg stage to independence of parental care. This estimate is higher than most estimates reported for laboratory populations and lower than those reported for zoo populations. Hence, the costs of inbreeding in this population were substantial and slightly above those expected from laboratory studies. Variability in estimates of lethal equivalents among years showed that costs of inbreeding were not constant across years.  相似文献   

2.
Extra‐pair copulation (EPC) is widespread in socially monogamous species, but its evolutionary benefits remain controversial. Indirect genetic benefit hypotheses postulate that females engage in EPC to produce higher quality extra‐pair offspring (EPO) than within‐pair offspring (WPO). In contrast, the sexual conflict hypothesis posits that EPC is beneficial to males but not to females. Thus, under the sexual conflict hypothesis, EPO are predicted to be no fitter than WPO. We tested these two hypotheses in a 12‐year dataset with complete life‐history and pedigree information from an isolated island population of house sparrows (Passer domesticus). We compared fitness components of EPO and two types of WPO: (1) WPO from genetically polyandrous “unfaithful” mothers, and (2) WPO from genetically monogamous mothers. We found that all three groups of offspring had similar probabilities of hatching and nestling survival. Unexpectedly, EPO had the lowest probability of recruiting into the breeding population and the lowest lifetime reproductive output. Our results indicate that EPO incurred indirect genetic costs, rather than benefits, which is contrary to indirect benefit models. Importantly, the indirect costs we observed are also underappreciated in current sexual conflict models. Our results call for improved theoretical frameworks that incorporate indirect costs by extending current sexual conflict models.  相似文献   

3.
Ongoing evolution of polyandry, and consequent extra‐pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross‐sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra‐pair reproduction and male within‐pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra‐pair reproduction and male liability for within‐pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free‐living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra‐pair reproduction is facilitated by genetic covariance with male within‐pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically.  相似文献   

4.
Inbreeding depression has become a central theme in evolutionary biology and is considered to be a driving force for the evolution of reproductive morphology, physiology, behavior, and mating systems. Despite the overwhelming body of empirical work on the reproductive consequences of inbreeding, relatively little is known on whether inbreeding depresses male and female fitness to the same extent. However, sex‐specific inbreeding depression has been argued to affect the evolution of selfing rates in simultaneous hermaphrodites and provides a powerful approach to test whether selection is stronger in males than in females, which is predicted to be the consequence of sexual selection. We tested for sex‐specific inbreeding depression in the simultaneously hermaphroditic freshwater snail Physa acuta by comparing the reproductive performance of both sex functions between selfed and outcrossed focal individuals under different levels of male–male competition. We found that inbreeding impaired both male and female reproductive success and that the magnitude of male inbreeding depression exceeded female inbreeding depression when the opportunity for sperm competition was highest. Our study provides the first evidence for sex‐specific inbreeding depression in a hermaphroditic animal and highlights the importance of considering the level of male–male competition when assessing sex differences in inbreeding depression.  相似文献   

5.
The variance in fitness across population members can influence major evolutionary processes. In socially monogamous but genetically polygynandrous species, extra‐pair paternity (EPP) is widely hypothesized to increase the variance in male fitness compared to that arising given the socially monogamous mating system. This hypothesis has not been definitively tested because comprehensive data describing males’ apparent (social) and realized (genetic) fitness have been lacking. We used 16 years of comprehensive social and genetic paternity data for an entire free‐living song sparrow (Melospiza melodia) population to quantify and compare variances in male apparent and realized fitness, and to quantify the contribution of the variances in within‐pair reproductive success (WPRS) and extra‐pair reproductive success (EPRS) and their covariance to the variance in realized fitness. Overall, EPP increased the variance in male fitness by only 0–27% across different fitness and variance measures. This relatively small effect reflected the presence of socially unpaired males with zero apparent and low realized fitness, small covariance between WPRS and EPRS, and large variance in WPRS that was relatively unaffected by EPP. Therefore, although EPP altered individual males’ contributions to future generations, its impact on population‐level parameters such as the opportunity for selection and effective population size was limited.  相似文献   

6.
A comprehensive understanding of plant mating system evolution requires detailed genetic models for both the mating system and inbreeding depression, which are often intractable. A simple approximation assuming that the mating system evolves by small infrequent mutational steps has been proposed. We examine its accuracy by comparing the evolutionarily stable selfing rates it predicts to those obtained from an explicit genetic model of the selfing rate, when inbreeding depression is caused by partly recessive deleterious mutations at many loci. Both models also include pollen limitation and pollen discounting. The approximation produces reasonably accurate predictions with a low or moderate genomic mutation rate to deleterious alleles, on the order of U = 0.02–0.2. However, for high mutation rates, the predictions of the full genetic model differ substantially from those of the approximation, especially with nearly recessive lethal alleles. This occurs because when a modifier allele affecting the selfing rate is rare, homozygous modifiers are produced mainly by selfing, which enhances the opportunity for purging nearly recessive lethals and increases the marginal fitness of the allele modifying the selfing rate. Our results confirm that explicit genetic models of selfing rate and inbreeding depression are required to understand mating system evolution.  相似文献   

7.
The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra‐pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within‐pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra‐pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade‐off between male within‐pair paternity success and extra‐pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection.  相似文献   

8.
Sexual conflict facilitates the evolution of traits that increase the reproductive success of males at the expense of components of female fitness. Theory suggests that indirect benefits are unlikely to offset the direct costs to females from antagonistic male adaptations, but empirical studies examining the net fitness pay‐offs of the interaction between the sexes are scarce. Here, we investigate whether matings with males that invest intrinsically more into accessory gland tissue undermine female lifetime reproductive success (LRS) in the cricket Teleogryllus oceanicus. We found that females incur a longevity cost of mating that is proportional to the partner’s absolute investment into the production of accessory gland products. However, male accessory gland weight positively influences embryo survival, and harmful ejaculate‐induced effects are cancelled out when these are put in the context of female LRS. The direct costs of mating with males that sire offspring with higher viability are thus compensated by direct and possibly indirect genetic benefits in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号