共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Structural determinants of increased susceptibility to dehydration‐induced cavitation in post‐fire resprouting chaparral shrubs 下载免费PDF全文
Anna L. Jacobsen Michael F. Tobin Hayden S. Toschi Marta I. Percolla R. Brandon Pratt 《Plant, cell & environment》2016,39(11):2473-2485
It is well established that transpiration and photosynthetic rates generally increase in resprouting shoots after fire in chaparral shrublands. By contrast, little is known about how plant hydraulic function varies during this same recovery period. We hypothesized that vascular traits, both functional and structural, would also shift in order to support this heightened level of gas exchange and growth. We examined stem xylem‐specific hydraulic conductivity (Ks) and resistance to cavitation (P50) for eight chaparral shrub species as well as several potential xylem structural determinants of hydraulic function and compared established unburned plants and co‐occurring post‐fire resprouting plants. Unburned plants were generally more resistant to cavitation than resprouting plants, but the two groups did not differ in Ks. Resprouting plants had altered vessel structure compared with unburned plants, with resprouting plants having both wider diameter vessels and higher inter‐vessel pit density. For biomechanics, unburned plants had both stronger and denser stem xylem tissue than resprouting plants. Shifts in hydraulic structure and function resulted in resprouting plants being more vulnerable to dehydration. The interaction between time since disturbance (i.e. resprouting versus established stands) and drought may complicate attempts to predict mortality risk of resprouting plants. 相似文献
3.
Slow life history and rapid extreme flood: demographic mechanisms and their consequences on population viability in a threatened amphibian 下载免费PDF全文
Hugo Cayuela Dragan Arsovski Sylvain Boitaud Eric Bonnaire Laurent Boualit Claude Miaud Pierre Joly Aurelien Besnard 《Freshwater Biology》2015,60(11):2349-2361
- 相似文献
4.
5.
Stephane Caut Michael J. Jowers Xavier Arnan Jessica Pearce‐Duvet Anselm Rodrigo Xim Cerda Raphaël R. Boulay 《Ecology and evolution》2014,4(1):35-49
Fire plays a key role in ecosystem dynamics worldwide, altering energy flows and species community structure and composition. However, the functional mechanisms underlying these effects are not well understood. Many ground‐dwelling animal species can shelter themselves from exposure to heat and therefore rarely suffer direct mortality. However, fire‐induced alterations to the environment may change a species' relative trophic level within a food web and its mode of foraging. We assessed how fire could affect ant resource utilization at different scales in a Mediterranean forest. First, we conducted isotopic analyses on entire ant species assemblages and their potential food resources, which included plants and other arthropods, in burned and unburned plots 1 year postfire. Second, we measured the production of males and females by nests of a fire‐resilient species, Aphaenogaster gibbosa, and analyzed the differences in isotopic values among workers, males, and females to test whether fire constrained resource allocation. We found that, in spite of major modifications in biotic and abiotic conditions, fire had little impact on the relative trophic position of ant species. The studied assemblage was composed of species with a wide array of diets. They ranged from being mostly herbivorous to completely omnivorous, and a given species' trophic level was the same in burned and unburned plots. In A. gibbosa nests, sexuals had greater δ15N values than workers in both burned and unburned plots, which suggests that the former had a more protein‐rich diet than the latter. Fire also appeared to have a major effect on A. gibbosa sex allocation: The proportion of nests that produced male brood was greater on burned zones, as was the mean number of males produced per nest with the same reproductive investment . Our results show that generalist ants with relatively broad diets maintained a constant trophic position, even following a major disturbance like fire. However, the dramatically reduced production of females on burned zones compared to unburned zones 1 year postfire may result in considerably reduced recruitment of new colonies in the mid to long term, which could yield genetic bottlenecks and founder effects. Our study paves the way for future functional analyses of fire‐induced modifications in ant populations and communities. 相似文献
6.
7.
David M. J. S. Bowman Brett P. Murphy Dominic L. J. Neyland Grant J. Williamson Lynda D. Prior 《Global Change Biology》2014,20(3):1008-1015
Obligate seeder trees requiring high‐severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long‐lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High‐severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high‐severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest. 相似文献
8.
Lewis L. Walden Joseph B. Fontaine Katinka X. Ruthrof George Matusick Richard J. Harper Giles E. St. J. Hardy 《Global Change Biology》2019,25(5):1653-1664
Prolonged drought and intense heat‐related events trigger sudden forest die‐off events and have now been reported from all forested continents. Such die‐offs are concerning given that drought and heatwave events are forecast to increase in severity and duration as climate change progresses. Quantifying consequences to carbon dynamics and storage from die‐off events are critical for determining the current and future mitigation potential of forests. We took stand measurements five times over 2+ years from affected and unaffected plots across the Northern Jarrah Forest, southwestern Australia, following an acute drought/heatwave in 2011. We found a significant loss of live standing carbon (49.3 t ha?1), and subsequently a significant increase in the dead standing carbon pool by 6 months post‐die‐off. Of the persisting live trees, 38% experienced partial mortality contributing to the rapid regrowth and replenishment (82%–88%) of labile carbon pools (foliage, twigs, and branches) within 26 months. Such regrowth was not substantial in terms of net carbon changes within the timeframe of the study but does reflect the resprouting resilience of this forest type. Dead carbon generated by the die‐off may persist for centuries given low fragmentation and decay rates resulting in low biogenic emission rates relative to other forest types. However, future fire may threaten persistence of both dead and live pools via combustion and mortality of live tissue and impaired regrowth capacity. Resprouting forests are commonly regarded as resilient systems, however, a changing climate could see vulnerable portions of forests become carbon sources rather than carbon sinks. 相似文献
9.
Observations of responses to re‐introducing fire in a Basalt Plains grassland after the removal of grazing: Implications for restoration 下载免费PDF全文
David Bryant Matthew J. Bruce Steve J. Sinclair 《Ecological Management & Restoration》2017,18(3):239-245
Natural grasslands in southern Australia commonly exist in altered states. One widespread altered state is grassland pasture dominated by cool‐season (C3) native grasses maintained by ongoing grazing. This study explores the consequences of removing grazing and introducing fire as a conservation management tool for such a site. We examined the abundance of two native and three exotic species, across a mosaic of fire regimes that occurred over a three‐year period: unburnt, summer wild‐fire (>2 years previous), autumn management fire (<1 year previously) and burnt in both fires. Given that one aim of conservation management is to increase native species at the expense of exotics, the impacts of the fires were largely positive. Native grasses were at higher cover levels in the fire‐managed vegetation than in the unburnt vegetation. Of the three exotic species, one was consistently at lower density in the burnt plots compared to the unburnt plots, while the others were lower only in those plots burnt in summer. The results show that the response of a species varies significantly between different fire events, and that the effects of one fire can persist through subsequent fires. Importantly, some of the effects were large, with changes in the density of plants of over 100‐fold. Fire is potentially a cost‐effective tool to assist the ecological restoration of retired grassland pastures at large scales. 相似文献
10.
Jessika M. Pettit Steve L. Voelker R. Justin DeRose Julia I. Burton 《Global Change Biology》2020,26(10):5829-5843
Climate change has amplified eruptive bark beetle outbreaks over recent decades, including spruce beetle (Dendroctonus rufipennis). However, for projecting future bark beetle dynamics there is a critical lack of evidence to differentiate how outbreaks have been promoted by direct effects of warmer temperatures on beetle life cycles versus indirect effects of drought on host susceptibility. To diagnose whether drought‐induced host‐weakening was important to beetle attack success we used an iso‐demographic approach in Engelmann spruce (Picea engelmannii) forests that experienced widespread mortality caused by spruce beetle outbreaks in the 1990s, during a prolonged drought across the central and southern Rocky Mountain region. We determined tree death date demography during this outbreak to differentiate early‐ and late‐dying trees in stands distributed across a landscape within this larger regional mortality event. To directly test for a role of drought stress during outbreak initiation we determined whether early‐dying trees had greater sensitivity of tree‐ring carbon isotope discrimination (?13C) to drought compared to late‐dying trees. Rather, evidence indicated the abundance and size of host trees may have modified ?13C responses to drought. ?13C sensitivity to drought did not differ among early‐ versus late‐dying trees, which runs contrary to previously proposed links between spruce beetle outbreaks and drought. Overall, our results provide strong support for the view that irruptive spruce beetle outbreaks across North America have primarily been driven by warming‐amplified beetle life cycles whereas drought‐weakened host defenses appear to have been a distant secondary driver of these major disturbance events. 相似文献
11.
12.
OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice 下载免费PDF全文
Jinjie Li Yang Li Zhigang Yin Jihong Jiang Minghui Zhang Xiao Guo Zhujia Ye Yan Zhao Haiyan Xiong Zhanying Zhang Yujie Shao Conghui Jiang Hongliang Zhang Gynheung An Nam‐Chon Paek Jauhar Ali Zichao Li 《Plant biotechnology journal》2017,15(2):183-196
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2O2, a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss‐of‐function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone‐like protein and interacted with stress‐related HSP40 and 2OG‐Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone‐like protein that possibly prevents drought stress‐related proteins from inactivation. 相似文献
13.
14.
The strong association observed between fire regimes and variation in plant adaptations to fire suggests a rapid response to fire as an agent of selection. It also suggests that fire‐related traits are heritable, a precondition for evolutionary change. One example is serotiny, the accumulation of seeds in unopened fruits or cones until the next fire, an important strategy for plant population persistence in fire‐prone ecosystems. Here, we evaluate the potential of this trait to respond to natural selection in its natural setting. For this, we use a SNP marker approach to estimate genetic variance and heritability of serotiny directly in the field for two Mediterranean pine species. Study populations were large and heterogeneous in climatic conditions and fire regime. We first estimated the realized relatedness among trees from genotypes, and then partitioned the phenotypic variance in serotiny using Bayesian animal models that incorporated environmental predictors. As expected, field heritability was smaller (around 0.10 for both species) than previous estimates under common garden conditions (0.20). An estimate on a subset of stands with more homogeneous environmental conditions was not different from that in the complete set of stands, suggesting that our models correctly captured the environmental variation at the spatial scale of the study. Our results highlight the importance of measuring quantitative genetic parameters in natural populations, where environmental heterogeneity is a critical aspect. The heritability of serotiny, although not high, combined with high phenotypic variance within populations, confirms the potential of this fire‐related trait for evolutionary change in the wild. 相似文献
15.
16.
Pablo Orozco‐terWengel Franco Andreone Edward Louis Jr Miguel Vences 《Molecular ecology》2013,22(24):6074-6090
Madagascar is a biodiversity hotspot with a unique fauna and flora largely endemic at the species level and highly threatened by habitat destruction. The processes underlying population‐level differentiation in Madagascar's biota are poorly understood and have been proposed to be related to Pleistocene climatic cycles, yet the levels of genetic divergence observed are often suggestive of ancient events. We combined molecular markers of different variability to assess the phylogeography of Madagascar's emblematic tomato frogs (Dyscophus guineti and D. antongilii) and interpret the observed pattern as resulting from ancient and recent processes. Our results suggest that the initial divergence between these taxa is probably old as reflected by protein‐coding nuclear genes and by a strong mitochondrial differentiation of the southernmost population. Dramatic changes in their demography appear to have been triggered by the end of the last glacial period and possibly by the short return of glacial conditions known as the 8K event. This dramatic change resulted in an approximately 50‐fold reduction of the effective population size in various populations of both species. We hypothesize these species' current mitochondrial DNA diversity distribution reflects a swamping of the mitochondrial genetic diversity of D. guineti by that of D. antongilii previous to the populations' bottlenecks during the Holocene, and probably as a consequence of D. antongilii demographic expansion approximately 1 million years ago. Our data support the continued recognition of D. antongilii and D. guineti as separate species and flag D. guineti as the more vulnerable species to past and probably also future environmental changes. 相似文献
17.
Yuko Miyazaki Yosuke Maruyama Yukako Chiba Masaki J. Kobayashi Benesh Joseph Kentaro K. Shimizu Keiichi Mochida Tsutom Hiura Hirokazu Kon Akiko Satake 《Ecology letters》2014,17(10):1299-1309
The role of resource availability in determining the incidence of masting has been widely studied, but how floral transition and initiation are regulated by the resource level is unclear. We tested the hypothesis that floral transition is stimulated by high resource availabiltiy in Fagus crenata based on a new technique, the expression analyses of flowering genes. We isolated F. crenata orthologues of FLOWERING LOCUS T, LEAFY and APETALA1, and confirmed their functions using transgenic Arabidopsis thaliana. We monitored the gene expression levels for 5 years and detected a cycle of on and off years, which was correlated with fluctuations of the shoot‐nitrogen concentration. Nitrogen fertilisation resulted in the significantly higher expression of flowering genes than the control, where all of the fertilised trees flowered, whereas the control did not. Our findings identified nitrogen as a key regulator of mast flowering, thereby providing new empirical evidence to support the resource budget model. 相似文献
18.
M.P. Sangorrín V. García C.A. Lopes J.S. Sáez C. Martínez M.A. Ganga 《Journal of applied microbiology》2013,114(4):1066-1074
Aims
Dekkera bruxellensis and Pichia guilliermondii are contaminating yeasts in wine due to the production of phenolic aromas. Although the degradation pathway of cinnamic acids, precursors of these phenolic compounds has been described in D. bruxellensis, no such pathway has been described in P. guilliermondii.Methods and Results
A molecular and physiological characterization of 14 D. bruxellensis and 15 P. guilliermondii phenol‐producing strains was carried out. Both p‐coumarate decarboxylase (CD) and vinyl reductase (VR) activities, responsible for the production of volatile phenols, were quantified and the production of 4‐vinylphenol and 4‐ethylphenol were measured. All D. bruxellensis and some P. guilliermondii strains showed the two enzymatic activities, whilst 11 of the 15 strains of this latter species showed only CD activity and did not produce 4‐EP in the assay conditions. Furthermore, PCR products obtained with degenerated primers showed a low homology with the sequence of the gene for a phenyl acrylic acid decarboxylase activity described in Saccharomyces cerevisiae.Conclusions
D. bruxellensis and P. guilliermondii may share a similar metabolic pathway for the degradation of cinnamic acids.Significance and Impact of the Study
This is the first work that analyses the CD and VR activities in P. guilliermondii, and the results suggest that within this species, there are differences in the metabolization of cinnamic acids. 相似文献19.
20.
Anthropogenic global climate change is expected to cause severe range contractions among alpine plants. Alpine areas in the Mediterranean region are of special concern because of the high abundance of endemic species with narrow ranges. This study combined species distribution models, population structure analyses and Bayesian skyline plots to trace the past and future distribution and diversity of Linaria glacialis, an endangered narrow endemic species that inhabits summits of Sierra Nevada (Spain). The results showed that: (i) the habitat of this alpine‐Mediterranean species in Sierra Nevada suffered little changes during glacial and interglacial stages of late Quaternary; (ii) climatic oscillations in the last millennium (Medieval Warm Period and Little Ice Age) moderately affected the demographic trends of L. glacialis; (iii) future warming conditions will cause severe range contractions; and (iv) genetic diversity will not diminish at the same pace as the distribution range. As a consequence of the low population structure of this species, genetic impoverishment in the alpine zones of Sierra Nevada should be limited during range contraction. We conclude that maintenance of large effective population sizes via high mutation rates and high levels of gene flow may promote the resilience of alpine plant species when confronted with global warming. 相似文献