共查询到7条相似文献,搜索用时 0 毫秒
1.
William Marchand Martin P. Girardin Henrik Hartmann Sylvie Gauthier Yves Bergeron 《Global Change Biology》2019,25(8):2793-2809
Currently, there is no consensus regarding the way that changes in climate will affect boreal forest growth, where warming is occurring faster than in other biomes. Some studies suggest negative effects due to drought‐induced stresses, while others provide evidence of increased growth rates due to a longer growing season. Studies focusing on the effects of environmental conditions on growth–climate relationships are usually limited to small sampling areas that do not encompass the full range of environmental conditions; therefore, they only provide a limited understanding of the processes at play. Here, we studied how environmental conditions and ontogeny modulated growth trends and growth–climate relationships of black spruce (Picea mariana) and jack pine (Pinus banksiana) using an extensive dataset from a forest inventory network. We quantified the long‐term growth trends at the stand scale, based on analysis of the absolutely dated ring‐width measurements of 2,266 trees. We assessed the relationship between annual growth rates and seasonal climate variables and evaluated the effects of various explanatory variables on long‐term growth trends and growth–climate relationships. Both growth trends and growth–climate relationships were species‐specific and spatially heterogeneous. While the growth of jack pine barely increased during the study period, we observed a growth decline for black spruce which was more pronounced for older stands. This decline was likely due to a negative balance between direct growth gains induced by improved photosynthesis during hotter‐than‐average growing conditions in early summers and the loss of growth occurring the following year due to the indirect effects of late‐summer heat waves on accumulation of carbon reserves. For stands at the high end of our elevational gradient, frost damage during milder‐than‐average springs could act as an additional growth stressor. Competition and soil conditions also modified climate sensitivity, which suggests that effects of climate change will be highly heterogeneous across the boreal biome. 相似文献
2.
Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming 下载免费PDF全文
Martin P. Girardin Edward H. Hogg Pierre Y. Bernier Werner A. Kurz Xiao Jing Guo Guillaume Cyr 《Global Change Biology》2016,22(2):627-643
An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree‐ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree‐ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. 相似文献
3.
An ecoregion assessment of projected tree species vulnerabilities in western North America through the 21st century 下载免费PDF全文
Forest ecosystems across western North America will likely see shifts in both tree species dominance and composition over the rest of this century in response to climate change. Our objective in this study was to identify which ecological regions might expect the greatest changes to occur. We used the process‐based growth model 3‐PG, to provide estimates of tree species responses to changes in environmental conditions and to evaluate the extent that species are resilient to shifts in climate over the rest of this century. We assessed the vulnerability of 20 tree species in western North America using the Canadian global circulation model under three different emission scenarios. We provided detailed projections of species shifts by including soil maps that account for the spatial variation in soil water availability and soil fertility as well as by utilizing annual climate projections of monthly changes in air temperature, precipitation, solar radiation, vapor pressure deficit and frost at a spatial resolution of one km. Projected suitable areas for tree species were compared to their current ranges based on observations at >40 000 field survey plots. Tree species were classified as vulnerable if environmental conditions projected in the future appear outside that of their current distribution ≥70% of the time. We added a migration constraint that limits species dispersal to <200 m yr?1 to provide more realistic projections on species distributions. Based on these combinations of constraints, we predicted the greatest changes in the distribution of dominant tree species to occur within the Northwest Forested Mountains and the highest number of tree species stressed will likely be in the North American Deserts. Projected climatic changes appear especially unfavorable for species in the subalpine zone, where major shifts in composition may lead to the emergence of new forest types. 相似文献
4.
Dominik Thom Marina Golivets Laura Edling Garrett W. Meigs Jesse D. Gourevitch Laura J. Sonter Gillian L. Galford William S. Keeton 《Global Change Biology》2019,25(7):2446-2458
Climate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old‐growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adaptive forest management strategies to sustain ESB. We focused on a number of ESB indicators to (a) analyze associations among carbon storage, timber growth rate, and species richness along a forest development gradient; (b) test the sensitivity of these associations to climatic changes; and (c) identify hotspots of climate sensitivity across the boreal–temperate forests of eastern North America. From pre‐existing databases and literature, we compiled a unique dataset of 18,507 forest plots. We used a full Bayesian framework to quantify responses of nine ESB indicators. The Bayesian models were used to assess the sensitivity of these indicators and their associations to projected increases in temperature and precipitation. We found the strongest association among the investigated ESB indicators in old forests (>170 years). These forests simultaneously support high levels of carbon storage, timber growth, and species richness. Older forests also exhibit low climate sensitivity of associations among ESB indicators as compared to younger forests. While regions with a currently low combined ESB performance benefitted from climate change, regions with a high ESB performance were particularly vulnerable to climate change. In particular, climate sensitivity was highest east and southeast of the Great Lakes, signaling potential priority areas for adaptive management. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions at landscape scales will help sustain ESB in a changing world. 相似文献
5.
EMILY M. RUBIDGE WILLIAM B. MONAHAN JUAN L. PARRA SUSAN E. CAMERON JUSTIN S. BRASHARES 《Global Change Biology》2011,17(2):696-708
Species distribution models are commonly used to predict species responses to climate change. However, their usefulness in conservation planning and policy is controversial because they are difficult to validate across time and space. Here we capitalize on small mammal surveys repeated over a century in Yosemite National Park, USA, to assess accuracy of model predictions. Historical (1900–1940) climate, vegetation, and species occurrence data were used to develop single‐ and multi‐species multivariate adaptive regression spline distribution models for three species of chipmunk. Models were projected onto the current (1980–2007) environmental surface and then tested against modern field resurveys of each species. We evaluated models both within and between time periods and found that even with the inclusion of biotic predictors, climate alone is the dominant predictor explaining the distribution of the study species within a time period. However, climate was not consistently an adequate predictor of the distributional change observed in all three species across time. For two of the three species, climate alone or climate and vegetation models showed good predictive performance across time. The stability of the distribution from the past to present observed in the third species, however, was not predicted by our modeling approach. Our results demonstrate that correlative distribution models are useful in understanding species' potential responses to environmental change, but also show how changes in species‐environment correlations through time can limit the predictive performance of models. 相似文献
6.
Cody J. Dey Evan Richardson David McGeachy Samuel A. Iverson Hugh G. Gilchrist Christina A. D. Semeniuk 《Global Change Biology》2017,23(5):1821-1831
Climate change can influence interspecific interactions by differentially affecting species‐specific phenology. In seasonal ice environments, there is evidence that polar bear predation of Arctic bird eggs is increasing because of earlier sea ice breakup, which forces polar bears into nearshore terrestrial environments where Arctic birds are nesting. Because polar bears can consume a large number of nests before becoming satiated, and because they can swim between island colonies, they could have dramatic influences on seabird and sea duck reproductive success. However, it is unclear whether nest foraging can provide an energetic benefit to polar bear populations, especially given the capacity of bird populations to redistribute in response to increasing predation pressure. In this study, we develop a spatially explicit agent‐based model of the predator–prey relationship between polar bears and common eiders, a common and culturally important bird species for northern peoples. Our model is composed of two types of agents (polar bear agents and common eider hen agents) whose movements and decision heuristics are based on species‐specific bioenergetic and behavioral ecological principles, and are influenced by historical and extrapolated sea ice conditions. Our model reproduces empirical findings that polar bear predation of bird nests is increasing and predicts an accelerating relationship between advancing ice breakup dates and the number of nests depredated. Despite increases in nest predation, our model predicts that polar bear body condition during the ice‐free period will continue to decline. Finally, our model predicts that common eider nests will become more dispersed and will move closer to the mainland in response to increasing predation, possibly increasing their exposure to land‐based predators and influencing the livelihood of local people that collect eider eggs and down. These results show that predator–prey interactions can have nonlinear responses to changes in climate and provides important predictions of ecological change in Arctic ecosystems. 相似文献
7.
Marie‐Hlne Brice Steve Vissault Willian Vieira Dominique Gravel Pierre Legendre Marie‐Jose Fortin 《Global Change Biology》2020,26(8):4418-4435
Several temperate tree species are expected to migrate northward and colonize boreal forests in response to climate change. Tree migrations could lead to transitions in forest types, but these could be influenced by several non‐climatic factors, such as disturbances and soil conditions. We analysed over 10,000 forest inventory plots, sampled from 1970 to 2018 in meridional Québec, Canada, to identify what environmental conditions promote or prevent regional‐scale forest transitions. We used a continuous‐time multi‐state Markov model to quantify the probabilities of transitions between forest states (temperate, boreal, mixed, pioneer) as a function of climate (mean temperature and climate moisture index during the growing season), soil conditions (pH and drainage) and disturbances (severity levels of natural disturbances and logging). We further investigate how different disturbance types and severities impact forests' short‐term transient dynamics and long‐term equilibrium using properties of Markov transition matrices. The most common transitions observed during the study period were from mixed to temperate states, as well as from pioneer to boreal forests. In our study, transitions were mainly driven by natural and anthropogenic disturbances and secondarily by climate, whereas soil characteristics exerted relatively minor constraints. While major disturbances only promoted transitions to the pioneer state, moderate disturbances increased the probability of transition from mixed to temperate states. Long‐term projections of our model under the current environmental conditions indicate that moderate disturbances would promote a northward shift of the temperate forest. Moreover, disturbances reduced turnover and convergence time for all transitions, thereby accelerating forest dynamics. Contrary to our expectation, mixed to temperate transitions were not driven by temperate tree recruitment but by mortality and growth. Overall, our results suggest that moderate disturbances could catalyse rapid forest transitions and accelerate broad‐scale biome shifts. 相似文献