首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Beetle assemblages in ponds: effects of habitat and site age   总被引:11,自引:1,他引:10  
  • 1 Water beetle assemblages were sampled in each of 18 freshwater ponds, including 11 recently constructed sites designed to provide mitigation for wetlands destruction elsewhere, and seven older reference sites. There were three objectives: (a) to relate taxon richness and biomass of the beetles to the same properties of the wider aquatic invertebrate community, (b) to evaluate changes in beetle assemblage structure over time, and (c) to determine habitat effects on taxonomic composition, mean body size and trophic guild structure of the beetle assemblage.
  • 2 Forty‐seven beetle genera were identified, representing 77 species. The beetles represented an average of 21.5% of total generic richness, but only 3.7% of total wet biomass of the wider invertebrate community.
  • 3 Of all variables evaluated using canonical correspondence analysis (CCA), site age had the greatest influence on the beetle assemblage. Predatory dytiscids were early colonists at younger sites, while herbivorous curculionids and chrysomelids associated with particular types of vegetation typically occurred in older ponds. Mitigation ponds and reference ponds supported similar numbers of species. Reference sites, however, harboured substantially more unique species found at only a single site within the study area.
  • 4 The presence of fish was also strongly related to beetle assemblage structure. Ponds with few or no fish contained about 3‐fold higher biomass and 3‐fold greater mean wet weight per individual compared to ponds with substantial fish assemblages.
  • 5 Beetle assemblage composition varied among sites and sampling years, but beetle biomass, richness and species composition may be useful tools in evaluating the success of wetland mitigation efforts.
  相似文献   

10.
  1. Previous macrophysiological studies suggested that temperature‐driven color lightness and body size variations strongly influence biogeographical patterns in ectotherms. However, these trait–environment relationships scale to local assemblages and the extent to which they can be modified by dispersal remains largely unexplored. We test whether the predictions of the thermal melanism hypothesis and the Bergmann's rule hold for local assemblages. We also assess whether these trait–environment relationships are more important for species adapted to less stable (lentic) habitats, due to their greater dispersal propensity compared to those adapted to stable (lotic) habitats.
  2. We quantified the color lightness and body volume of 99 European dragon‐ and damselflies (Odonata) and combined these trait information with survey data for 518 local assemblages across Europe. Based on this continent‐wide yet spatially explicit dataset, we tested for effects temperature and precipitation on the color lightness and body volume of local assemblages and assessed differences in their relative importance and strength between lentic and lotic assemblages, while accounting for spatial and phylogenetic autocorrelation.
  3. The color lightness of assemblages of odonates increased, and body size decreased with increasing temperature. Trait–environment relationships in the average and phylogenetic predicted component were equally important for assemblages of both habitat types but were stronger in lentic assemblages when accounting for phylogenetic autocorrelation.
  4. Our results show that the mechanism underlying color lightness and body size variations scale to local assemblages, indicating their general importance. These mechanisms were of equal evolutionary significance for lentic and lotic species, but higher dispersal ability seems to enable lentic species to cope better with historical climatic changes. The documented differences between lentic and lotic assemblages also highlight the importance of integrating interactions of thermal adaptations with proxies of the dispersal ability of species into trait‐based models, for improving our understanding of climate‐driven biological responses.
  相似文献   

11.
12.
  • 1 Effective environmental management requires a sound understanding of the causal mechanisms underlying the relationship of species with their environment. Mechanistic explanations linking species and environment are ultimately based on species traits. Many tools for ecological assessment and biomonitoring lack such explanations. Elsewhere, we have defined life‐history strategies, based on the interrelations between species traits and their functional implications.
  • 2 This study tests the hypothesis that life‐history strategies represent different solutions to particular ecological problems, thus connecting species and their environment through species traits. Data on aquatic macroinvertebrates in a variety of waterbodies were analysed in terms of life‐history strategies. These waterbodies differed in environmental conditions and macroinvertebrate assemblages. Solutions to the ecological problems present in each type of water body were expected to be reflected in the abundance of (species exhibiting) different life‐history strategies.
  • 3 Results show clear differences in strategy composition between the different water types, which could be related to the prevailing environmental conditions through mechanistic explanations. For example, species with a long period of juvenile development and a synchronized emergence of short‐lived adults were most dominant in large mesotrophic waterbodies with stable and predictable environmental conditions. In contrast, species that have a rapid development and spread successive reproduction attempts over a longer time period were most abundant in waterbodies with fluctuating and less predictable environmental conditions.
  • 4 Differences in strategy composition provide insight into the prevailing environmental conditions related to temporal predictability, and habitat favourability, from the perspective of the species themselves. By reducing diverse species assemblages to a small number of strategies, representing easily interpretable relationships, this approach may be useful in environmental quality assessment programmes, including those required by the European Water Framework Directive. Based on mechanistic explanations, life‐history strategies may generate testable predictions and guide future research. Further research may focus on expanding life‐history strategies to include other species groups and ecosystems.
  相似文献   

13.
14.
15.
16.
  • 1 The methods used to indicate the biological state of streams are often based on taxonomic composition, and the abundance of species or other taxa. This ‘taxonomic structure’ varies among ecoregions and cannot be applied to wider geographical areas. Therefore, we assessed the species traits of benthic macroinvertebrates from semi‐natural reference sites as a potential benchmark for large‐scale biomonitoring. Our purpose was to assess the stability of community structure, based on the representation of taxa and of traits, across large gradients of geology (sedimentary to granitic), altitude (65–1982 m), geographical coordinates (0° 48′ W to 7° 20′ E and 42° 52′ to 48° 44′ N), stream order (1–5) and slope (0.5–60‰).
  • 2 We used invertebrate abundance data from the 62 most natural French stream sites available. These abundance data served to weight the occurrence of ‘biological’ traits, such as reproductive characteristics, mobility, resistance forms, food, feeding habits, respiration, and ‘ecological’ traits, such as preferences for temperature, trophic level, saprobity, biogeographic distribution, longitudinal zonation, substratum and current velocity.
  • 3 Multivariate analyses of taxonomic composition demonstrated a clear site gradient from lowlands to uplands and from calcareous to granitic geology. In contrast, community structure based on both biological and ecological traits was stable across environmental gradients.
  • 4 The frequency distribution of biological traits indicated that the stream benthos of the ‘reference sites’ had a mixture of categories which confirmed theoretical predictions for temporally stable and spatially variable habitats. A mixture of ecological trait categories also occurred at our reference sites. Thus, semi‐natural benthic macroinvertebrate communities are functionally diverse. Moreover, we included an initial application of these traits to a case of slightly to moderately polluted sites to show that the impact of humans significantly changes this natural functional diversity.
  • 5 Future studies should focus on the potential for various biological and ecological traits to discriminate different human impacts on the benthic macroinvertebrates of running waters, and on the integration of this functional application into a general ‘reference‐condition’ approach.
  相似文献   

17.

Aim

To evaluate how environment and evolutionary history interact to influence global patterns of mammal trait diversity (a combination of 14 morphological and life‐history traits).

Location

The global terrestrial environment.

Taxon

Terrestrial mammals.

Methods

We calculated patterns of spatial turnover for mammalian traits and phylogenetic lineages using the mean nearest taxon distance. We then used a variance partitioning approach to establish the relative contribution of trait conservatism, ecological adaptation and clade specific ecological preferences on global trait turnover.

Results

We provide a global scale analysis of trait turnover across mammalian terrestrial assemblages, which demonstrates that phylogenetic turnover by itself does not predict trait turnover better than random expectations. Conversely, trait turnover is consistently more strongly associated with environmental variation than predicted by our null models. The influence of clade‐specific ecological preferences, reflected by the shared component of phylogenetic turnover and environmental variation, was considerably higher than expectations. Although global patterns of trait turnover are dependent on the trait under consideration, there is a consistent association between trait turnover and environmental predictive variables, regardless of the trait considered.

Main conclusions

Our results suggest that changes in phylogenetic composition are not always coupled with changes in trait composition on a global scale and that environmental conditions are strongly associated with patterns of trait composition across species assemblages, both within and across phylogenetic clades.  相似文献   

18.
19.
20.
  1. Intraspecific variation plays important roles in ecology and evolution. Yet, information on how species and populations vary remains scarce, particularly for insects and regarding functional traits. This lack of knowledge can be problematic in trait‐based ecology because traditional approaches assume negligible intraspecific variation, even for analyses that assess highly variable taxa.
  2. We measured 291 Arctic fritillary butterflies (Boloria chariclea) to assess the intraspecific variation in one population of this species, evaluating (i) how wingspan of Arctic fritillaries varies in relation to the other species of its community, and (ii) how well wingspan, a measure of body size, predicts weight, a measure of body mass.
  3. Wingspan of Arctic fritillaries varied between 2.62 and 4.07 cm, with the 95% interval range, including ~33% (14/42) of the species in the community, and ~30% (84/279) of the butterflies of Canada. The relationship between wingspan and weight was significant (βwingspan = 0.002, SE = 0.0008, P < 0.001), but relatively weak (R2adj = 0.31, F2,288 = 67.82, P < 0.001).
  4. We discuss our findings in relation to the assumption of species homogeneity and the use of proxies in the analysis of species traits, complementing our case study with simulations to illustrate how intraspecific and interspecific variation interact in determining when traditional trait analyses are robust. We suggest entomologists interested in trait analyses should critically evaluate how intraspecific variation could affect their inference, especially when evaluating species that are highly sexually dimorphic, phenotypically plastic, and/or distributed across broad environmental and spatial clines.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号