共查询到20条相似文献,搜索用时 15 毫秒
1.
Michail Rovatsos Jasna Vuki? Petros Lymberakis Luká? Kratochvíl 《Proceedings. Biological sciences / The Royal Society》2015,282(1821)
Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. 相似文献
2.
Kenneth I. Warheit Jonathan D. Forman Jonathan B. Losos Donald B. Miles 《Evolution; international journal of organic evolution》1999,53(4):1226-1234
We compared the morphological diversity (i.e., the amount of morphological space occupied) of two similar clades, the lizard genera Anolis and Sceloporus. These species-rich monophyletic clades are similar in body size, age of origin, and many aspects of their natural history. We examined a number of morphological traits whose variation is likely to represent adaptation to different aspects of the environment, including body size, limb proportions, head dimensions, and tail length. Examination of the position of species in multidimensional space, based on a principal components analysis, indicates that the morphological diversity of Anolis, which we refer to as disparity, is significantly greater than that of Sceloporus. One potential explanation for this pattern is that morphological diversification in Anolis was facilitated by the evolution of subdigital toe-pads, which allow anoles to use the environment in ways not available to Sceloporus. The geographic location of diversification (tropical and subtropical for Anolis, arid for Sceloporus) may also have been important. 相似文献
3.
Marie Altmanová Daniel Frynta Michail Rovatsos Lukáš Kratochvíl 《Evolution; international journal of organic evolution》2018,72(8):1701-1707
Snakes are historically important in the formulation of several central concepts on the evolution of sex chromosomes. For over 50 years, it was believed that all snakes shared the same ZZ/ZW sex chromosomes, which are homomorphic and poorly differentiated in “basal” snakes such as pythons and boas, while heteromorphic and well differentiated in “advanced” (caenophidian) snakes. Recent molecular studies revealed that differentiated sex chromosomes are indeed shared among all families of caenophidian snakes, but that boas and pythons evolved likely independently male heterogamety (XX/XY sex chromosomes). The historical report of heteromorphic ZZ/ZW sex chromosomes in a boid snake was previously regarded as ambiguous. In the current study, we document heteromorphic ZZ/ZW sex chromosomes in a boid snake. A comparative approach suggests that these heteromorphic sex chromosomes evolved very recently and that they are poorly differentiated at the sequence level. Interestingly, two snake lineages with confirmed male heterogamety possess homomorphic sex chromosomes, but heteromorphic sex chromosomes are present in both snake lineages with female heterogamety. We point out that this phenomenon is more common across squamates. The presence of female heterogamety in non‐caenophidian snakes indicates that the evolution of sex chromosomes in this lineage is much more complex than previously thought, making snakes an even better model system for the evolution of sex chromosomes. 相似文献
4.
Martina Johnson Pokorná Lukáš Kratochvíl 《Biological reviews of the Cambridge Philosophical Society》2016,91(1):1-12
Amniote vertebrates, the group consisting of mammals and reptiles including birds, possess various mechanisms of sex determination. Under environmental sex determination (ESD), the sex of individuals depends on the environmental conditions occurring during their development and therefore there are no sexual differences present in their genotypes. Alternatively, through the mode of genotypic sex determination (GSD), sex is determined by a sex‐specific genotype, i.e. by the combination of sex chromosomes at various stages of differentiation at conception. As well as influencing sex determination, sex‐specific parts of genomes may, and often do, develop specific reproductive or ecological roles in their bearers. Accordingly, an individual with a mismatch between phenotypic (gonadal) and genotypic sex, for example an individual sex‐reversed by environmental effects, should have a lower fitness due to the lack of specialized, sex‐specific parts of their genome. In this case, evolutionary transitions from GSD to ESD should be less likely than transitions in the opposite direction. This prediction contrasts with the view that GSD was the ancestral sex‐determining mechanism for amniote vertebrates. Ancestral GSD would require several transitions from GSD to ESD associated with an independent dedifferentiation of sex chromosomes, at least in the ancestors of crocodiles, turtles, and lepidosaurs (tuataras and squamate reptiles). In this review, we argue that the alternative theory postulating ESD as ancestral in amniotes is more parsimonious and is largely concordant with the theoretical expectations and current knowledge of the phylogenetic distribution and homology of sex‐determining mechanisms. 相似文献
5.
Michail Rovatsos Jasna Vukić Marie Altmanová Martina Johnson Pokorná Jiří Moravec Lukáš Kratochvíl 《Molecular ecology》2016,25(13):3120-3126
Sex chromosomes are believed to be stable in endotherms, but young and evolutionary unstable in most ectothermic vertebrates. Within lacertids, the widely radiated lizard group , sex chromosomes have been reported to vary in morphology and heterochromatinization, which may suggest turnovers during the evolution of the group. We compared the partial gene content of the Z‐specific part of sex chromosomes across major lineages of lacertids and discovered a strong evolutionary stability of sex chromosomes. We can conclude that the common ancestor of lacertids, living around 70 million years ago (Mya), already had the same highly differentiated sex chromosomes. Molecular data demonstrating an evolutionary conservation of sex chromosomes have also been documented for iguanas and caenophidian snakes. It seems that differences in the evolutionary conservation of sex chromosomes in vertebrates do not reflect the distinction between endotherms and ectotherms, but rather between amniotes and anamniotes, or generally, the differences in the life history of particular lineages. 相似文献
6.
Sex determination: Are two mechanisms better than one? 总被引:1,自引:0,他引:1
Bull JJ 《Journal of biosciences》2008,33(1):5-8
7.
Cichlid species of the genus Oreochromis vary in their genetic sex-determination systems. In this study, we used microsatellite DNA markers to characterize the sex-determination system in Oreochromis tanganicae. Markers on linkage group 3 were associated with phenotypic sex, with an inheritance pattern typical of a female heterogametic species (WZ-ZZ). Further, locus duplication was observed for two separate microsatellite markers on the sex chromosome. These results further advance our understanding of the rapidly evolving sex-determination systems among these closely related tilapia species. 相似文献
8.
早期胚胎的发育选择:性别决定 总被引:2,自引:0,他引:2
性别决定是一个复杂的发育调控过程, 早期胚胎发育过程中, 雌雄二者必居其一的发育选择是胚胎性腺形成必须的发育决定。文章综述了动物性别决定的遗传系统、性腺发生、性别决定关键基因及其作用机制, 从分子进化的角度分析了性染色体与性别决定形成机制, 提示性别决定基因在进化中总是趋向异配性染色体。 相似文献
9.
Kudryavtsev I. V. Safronova L. D. Kudryavtsev P. I. 《Russian Journal of Developmental Biology》2003,34(6):337-346
The material was analyzed on the main problems of genetics of mammalian spermatogenesis, sex determination, its reversion and other defects from the standpoint of current cytological and molecular-genetic concepts of functional activity of the parental genomes after fertilization and behavior of their chromosomes at the early embryonic stages. On the basis of this analysis, a hypothesis has been proposed, which explains a high percentage (50% or more) of early embryonic mortality in placental mammals under the conditions of natural and extracorporeal fertilization, as well as regular appearance of defects in the course of natural sex determination, including the appearance of representatives of both sex minorities. We do not make pretense to comprehensive and deep analysis of male gametogenesis and sex determination in mammals. 相似文献
10.
Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard 总被引:1,自引:0,他引:1
An individual's sex depends upon its genes (genotypic sex determination or GSD) in birds and mammals, but reptiles are more complex: some species have GSD whereas in others, nest temperatures determine offspring sex (temperature-dependent sex determination). Previous studies suggested that montane scincid lizards (Bassiana duperreyi, Scincidae) possess both of these systems simultaneously: offspring sex is determined by heteromorphic sex chromosomes (XX-XY system) in most natural nests, but sex ratio shifts suggest that temperatures override chromosomal sex in cool nests to generate phenotypically male offspring even from XX eggs. We now provide direct evidence that incubation temperatures can sex-reverse genotypically female offspring, using a DNA sex marker. Application of exogenous hormone to eggs also can sex-reverse offspring (oestradiol application produces XY as well as XX females). In conjunction with recent work on a distantly related lizard taxon, our study challenges the notion of a fundamental dichotomy between genetic and thermally determined sex determination, and hence the validity of current classification schemes for sex-determining systems in reptiles. 相似文献
11.
Michail Rovatsos Klra Farka
ov Marie Altmanov Martina Johnson Pokorn Luk Kratochvíl 《Molecular ecology》2019,28(12):3042-3052
12.
《Current biology : CB》2021,31(21):4800-4809.e9
- Download : Download high-res image (219KB)
- Download : Download full-size image
13.
Glor RE Kolbe JJ Powell R Larson A Losos J 《Evolution; international journal of organic evolution》2003,57(10):2383-2397
Abstract Anolis lizards in the Greater Antilles partition the structural microhabitats available at a given site into four to six distinct categories. Most microhabitat specialists, or ecomorphs, have evolved only once on each island, yet closely related species of the same ecomorph occur in different geographic macrohabitats across the island. The extent to which closely related species of the same ecomorph have diverged to adapt to different geographic macro-habitats is largely undocumented. On the island of Hispaniola, members of the Anolis cybotes species group belong to the trunk-ground ecomorph category. Despite evolutionary stability of their trunk-ground microhabitat, populations of the A. cybotes group have undergone an evolutionary radiation associated with geographically distinct macrohabitats. A combined phylogeographic and morphometric study of this group reveals a strong association between macrohabitat type and morphology independent of phylogeny. This association results from long-term morphological evolutionary stasis in populations associated with mesic-forest environments ( A. c. cybotes and A. marcanoi ) and predictable morphometric changes associated with entry into new macrohabitat types (i.e., xeric forests, high-altitude pine forest, rock outcrops). Phylogeographic analysis of 73 new mitochondrial DNA sequences (1921 aligned sites) sampled from 68 geographic populations representing 12 recognized species and subspecies diagnoses 16 allopatric or parapatric groupings of populations differing from each other by 5–18% sequence divergence. At least some of these groupings appear to have attained species-level divergence from others. Evolutionary specialization to different macrohabitat types may be a major factor in the evolutionary diversification of Greater Antillean anoles. 相似文献
14.
Veronika Slancarova Jana Zdanska Bohuslav Janousek Martina Talianova Christian Zschach Jitka Zluvova Jiri Siroky Viera Kovacova Hana Blavet Jiri Danihelka Bengt Oxelman Alex Widmer Boris Vyskot 《Evolution; international journal of organic evolution》2013,67(12):3669-3677
The plant genus Silene has become a model for evolutionary studies of sex chromosomes and sex‐determining mechanisms. A recent study performed in Silene colpophylla showed that dioecy and the sex chromosomes in this species evolved independently from those in Silene latifolia, the most widely studied dioecious Silene species. The results of this study show that the sex‐determining system in Silene otites, a species related to S. colpophylla, is based on female heterogamety, a sex determination system that is unique among the Silene species studied to date. Our phylogenetic data support the placing of S. otites and S. colpophylla in the subsection Otites and the analysis of ancestral states suggests that the most recent common ancestor of S. otites and S. colpophylla was most probably dioecious. These observations imply that a switch from XX/XY sex determination to a ZZ/ZW system (or vice versa) occurred in the subsection Otites. This is the first report of two different types of heterogamety within one plant genus of this mostly nondioecious plant family. 相似文献
15.
Sex is determined genetically in some species (genotypic sex determination, or GSD) and by the environment (environmental sex determination, or ESD) in others. The two systems are generally viewed as incompatible alternatives, but we have found that sex determination in a species of montane lizard ( Bassiana duperreyi , Scincidae) in south-eastern Australia is simultaneously affected by sex chromosomes and incubation temperatures, as well as being related to egg size. This species has strongly heteromorphic sex chromosomes, and yet incubation at thermal regimes characteristic of cool natural nests generates primarily male offspring. We infer that incubation temperatures can over-ride genetically determined sex in this species, providing a unique opportunity to explore these alternative sex-determining systems within a single population. 相似文献
16.
KLAUS Reinhold 《Evolutionary ecology》1998,12(2):245-250
The reason for the frequent occurrence of environmental sex determination (ESD) in reptiles is still not well understood, although much effort has been devoted to solving the issue. Stimulated by the occurrence of nest-site philopatry in some species, this paper examines a diploid model of the influence of nest-site philopatry on the evolution of ESD. Analysis shows that nest-site philopatry can lead to ESD because the fitnesses of sons and daughters are not influenced in the same way by nest-site quality. Daughters inherit the nest site and thus benefit more than sons from a high-quality nest site. Conversely, the fitness of daughters at low-quality nest sites is lower compared to the fitness of sons. Therefore, genes causing ESD can spread by causing the production of more sons at low-quality nest sites and more daughters at high-quality nest sites. Suggestions are made to test empirically whether nest-site philopatry led to the evolution of ESD. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
17.
18.
19.
Phillips BC Edmands S 《BioEssays : news and reviews in molecular, cellular and developmental biology》2012,34(3):166-169
Squamates may be an attractive group in which to study the influence of sex chromosomes on speciation rates because of the repeated evolution of heterogamety (both XY and ZW), as well as an apparently large number of taxa with environmental sex-determination. 相似文献
20.
Evolutionary transitions between sex‐determining mechanisms (SDMs) are an enigma. Among vertebrates, individual sex (male or female) is primarily determined by either genes (genotypic sex determination, GSD) or embryonic incubation temperature (temperature‐dependent sex determination, TSD), and these mechanisms have undergone repeated evolutionary transitions. Despite this evolutionary lability, transitions from GSD (i.e. from male heterogamety, XX/XY, or female heterogamety, ZZ/ZW) to TSD are an evolutionary conundrum, as they appear to require crossing a fitness valley arising from the production of genotypes with reduced viability owing to being homogametic for degenerated sex chromosomes (YY or WW individuals). Moreover, it is unclear whether alternative (e.g. mixed) forms of sex determination can persist across evolutionary time. It has previously been suggested that transitions would be easy if temperature‐dependent sex reversal (e.g. XX male or XY female) was asymmetrical, occurring only in the homogametic sex. However, only recently has a mechanistic model of sex determination emerged that may allow such asymmetrical sex reversal. We demonstrate that selection for TSD in a realistic sex‐determining system can readily drive evolutionary transitions from GSD to TSD that do not require the production of YY or WW individuals. In XX/XY systems, sex reversal (female to male) occurs in a portion of the XX individuals only, leading to the loss of the Y allele (or chromosome) from the population as XX individuals mate with each other. The outcome is a population of XX individuals whose sex is determined by incubation temperature (TSD). Moreover, our model reveals a novel evolutionarily stable state representing a mixed‐mechanism system that has not been revealed by previous approaches. This study solves two long‐standing puzzles of the evolution of sex‐determining mechanisms by illuminating the evolutionary pathways and endpoints. 相似文献