首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populations of the multi-trichomous microbial fossil Eoschizothrix composita n.gen. et sp. are preserved in growth position in silicified stratiform stromatolites of the Gaoyuzhuang Formation, Hebei Province, northern China. The microbial fossils consist predominantly of preserved sheaths, although several specimens retain shriveled remains of trichomes within sheaths. Comparisons with modern morphological counterparts, including shape, growth habit and orientation, degradational sequences, and habitat, support the interpretation of the multi-trichomous microfossils as cyanobacteria, which acted as frame-builders of ancient stromatolites. The distribution and orientation of multi-trichomous microfossils within a synsedimentary context reveal their behavioral responses to sedimentation regime. Horizontally spread, interwoven mats formed during periods of sedimentary stasis. During periods of rapid sediment influx, the filaments assumed an upright orientation, possibly to avoid accumulating particles. This is the first record of fossil stromatolite-building multi-trichomous cyanobacterial which underscores early morphological and functional diversification in cyanobacterial evolution.  相似文献   

2.
Exceptional fossil preservation is observed in self-sealing microcavities in limestones where lichens, cyanobacteria and fungi together entombed themselves and organic walled microfossils, crustaceans and their eggs. Preservation has been enabled by calcite coating, lining and impregnation of the exoskeleton of the crustaceans, which had a high original calcium content and acted as a nucleus for precipitation. The good preservation was facilitated by the microcavities, the surrounding limestone, the seasonality and rapidity of precipitation, the microbial colonies living on the specimens, and the fluxing of vadose waters through the karst. The microbes and the crustaceans probably became trapped by the very high rate of calcite precipitation promoted within the cavities. Entrapment in mucous-secreting mats of cyanobacteria and fungi preceded the destruction of some of the soft parts of the crustaceans. By the time the mats and the incorporated biota were sealed into the cavities in the limestone, the mucosic mats and their bacterial communities had mediated production of a range of calcite cements promoting preservation of the refractory tissues. This process has important implications for cementation studies in arid zones (and especially in the Martian subsurface), since a range of microbes are involved in progressive biomineralization leading to fossilization within a perched, vadose karst.  相似文献   

3.
We have examined the biosynthesis and accumulation of cyanobacterial sunscreening pigment scytonemin within intertidal microbial mat communities using a combination of chemical, molecular, and phylogenetic approaches. Both laminated (layered) and nonlaminated mats contained scytonemin, with morphologically distinct mats having different cyanobacterial community compositions. Within laminated microbial mats, regions with and without scytonemin had different dominant oxygenic phototrophs, with scytonemin-producing areas consisting primarily of Lyngbya aestuarii and scytonemin-deficient areas dominated by a eukaryotic alga. The nonlaminated mat was populated by a diverse group of cyanobacteria and did not contain algae. The amplification and phylogenetic assignment of scytonemin biosynthetic gene scyC from laminated mat samples confirmed that the dominant cyanobacterium in these areas, L. aestuarii, is likely responsible for sunscreen production. This study is the first to utilize an understanding of the molecular basis of scytonemin assembly to explore its synthesis and function within natural microbial communities.  相似文献   

4.
Shark Bay, Western Australia is a World Heritage area with extensive microbial mats and stromatolites. Microbial communities that comprise these mats have developed a range of mitigation strategies against changing levels of photosynthetically active and ultraviolet radiation, including the ability to biosynthesise the UV-absorbing natural products scytonemin and mycosporine-like amino acids (MAAs). To this end, the distribution of photoprotective pigments within Shark Bay microbial mats was delineated in the present study. This involved amplicon sequencing of bacterial 16S rDNA from communities at the surface and subsurface in three distinct mat types (smooth, pustular and tufted), and correlating this data with the chemical and molecular distribution of scytonemin and MAAs. Employing UV spectroscopy and MS/MS fragmentation, mycosporine-glycine, asterina and an unknown MAA were identified based on typical fragmentation patterns. Marker genes for scytonemin and MAA production (scyC and mysC) were amplified from microbial mat DNA and placed into phylogenetic context against a broad screen throughout 363 cyanobacterial genomes. Results indicate that occurrence of UV screening compounds is associated with the upper layer of Shark Bay microbial mats, and the occurrence of scytonemin is closely dependent on the abundance of cyanobacteria.  相似文献   

5.
Scytonemin, the yellow-brown pigment of cyanobacterial (blue-green algal) extracellular sheaths, was found in species thriving in habitats exposed to intense solar radiation. Scytonemin occurred predominantly in sheaths of the outermost parts or top layers of cyanobacterial mats, crusts, or colonies. Scytonemin appears to be a single compound identified in more than 30 species of cyanobacteria from cultures and natural populations. It is lipid soluble and has a prominent absorption maximum in the near-ultraviolet region of the spectrum (384 nm in acetone; ca. 370 nm in vivo) with a long tail extending to the infrared region. Microspectrophotometric measurements of the transmittance of pigmented sheaths and the quenching of ultraviolet excitation of phycocyanin fluorescence demonstrate that the pigment was effective in shielding the cells from incoming near-ultraviolet-blue radiation, but not from green or red light. High light intensity (between 99 and 250 μmol photon · m?2· S?1, depending on species) promoted the synthesis of scytonemin in cultures of cyanobacteria. In cultures, high light intensity caused reduction in the specific content of Chl a and phycobilins, increase in the ratio of total carotenoids to Chl a, and scytonemin increase. UV-A (320–400 nm) radiation was very effective in eliciting scytonemin synthesis. Scytonemin production was physiological and not due to a mere photochemical conversion. These results strongly suggest that scytonemin production constitutes an adaptive strategy of photoprotection against short-wavelength solar irradiance.  相似文献   

6.
Thrombolite and stromatolite habitats are becoming increasingly recognized as important refuges for invertebrates during Phanerozoic Oceanic Anoxic Events (OAEs); it is posited that oxygenic photosynthesis by cyanobacteria in these microbialites provided a refuge from anoxic conditions (i.e., the “microbialite refuge” hypothesis). Here, we test this hypothesis by investigating the distribution of ~34, 500 benthic invertebrate fossils found in ~100 samples from a microbialite succession that developed following the latest Permian mass extinction event on the Great Bank of Guizhou (South China), representing microbial (stromatolites and thrombolites) and non‐microbial facies. The stromatolites were the least taxonomically diverse facies, and the thrombolites also recorded significantly lower diversities when compared to the non‐microbial facies. Based on the distribution and ornamentation of the bioclasts within the thrombolites and stromatolites, the bioclasts are inferred to have been transported and concentrated in the non‐microbial fabrics, that is, cavities around the microbial framework. Therefore, many of the identified metazoans from the post‐extinction microbialites are not observed to have been living within a microbial mat. Furthermore, the lifestyle of many of the taxa identified from the microbialites was not suited for, or even amenable to, life within a benthic microbial mat. The high diversity of oxygen‐dependent metazoans in the non‐microbial facies on the Great Bank of Guizhou, and inferences from geochemical records, suggests that the microbialites and benthic communities developed in oxygenated environments, which disproves that the microbes were the source of the oxygenation. Instead, we posit that microbialite successions represent a taphonomic window for exceptional preservation of the biota, similar to a Konzentrat‐Lagerstätte, which has allowed for diverse fossil assemblages to be preserved during intervals of poor preservation.  相似文献   

7.
In the last 20 years, much taphonomic experimentation has focused on the interpretation of exceptionally preserved fossils. Decay experiments have been used to interpret the features preserved in soft‐bodied fossils and to determine the sequence of character loss and its impact on phylogenetic position. Experiments on the impact of microbial communities on decay and mineralization have started to illuminate the processes involved in the fossilization of soft tissues, including embryos. The role of decay in promoting authigenic mineralization has been used to investigate the formation of Ediacaran macrofossils and concretions. Maturation experiments have shown how the constituents of animals and plants are transformed over time to a macromolecular material that converges on a similar stable composition. Other maturation experiments have explained how structural colours in fossils are altered from the original. A major area requiring investigation is the role of specific types of microbes in decay and their impact on sediment and pore water chemistry, as well as the environmental controls that determine their presence and level of activity. Microbial activity has received less attention than other factors in attempts to explain why the occurrence and nature of exceptional preservation varies in time and space through the fossil record.  相似文献   

8.
The Sirius Passet Lagerstätte (SP), Peary Land, North Greenland, occurs in black slates deposited at or just below storm wave base. It represents the earliest Cambrian microbial mat community with exceptional preservation, predating the Burgess Shale by 10 million years. Trilobites from the SP are preserved as complete, three‐dimensional, concave hyporelief external moulds and convex epirelief casts. External moulds are shown to consist of a thin veneer of authigenic silica. The casts are formed from silicified cyanobacterial mat material. Silicification in both cases occurred shortly after death within benthic cyanobacterial mats. Pore waters were alkali, silica‐saturated, high in ferric iron but low in oxygen and sulphate. Excess silica was likely derived from remobilized biogenic silica. The remarkable siliceous death mask preservation opens a new window on the environment and location of the Cambrian Explosion. This window closed with the appearance of abundant mat grazers later as the Cambrian Explosion intensified.  相似文献   

9.
Summary Bryostromatolites are laminated carbonate rocks composed of bryozoan zoarial laminae. The laminated texture is frequently caused by patterns of bryozoan self overgrowth as a regular defensive tactic against microbial fouling. In the Coorong Lagoon (South Australia), another type of bryostromatolite is present where the laminated growth of the weakly calcifying bryozoan speciesConopeum aciculata is postmortally stabilized by cyanobacterial mats at the surface, and fungal mats settling in the zooecial cavities. A tough extracellular slime network produced by benthic cyanobacteria is a trap for sediment particles, provides a method of adhesion to the bryozoan substrate, and produces a biological lamination by the vertical stratification of dead bryozoan skeletons. These slimes are also important for the preservation of cell structures and for their fossilization. Seasonal fluctuations in salinity and water level are the most important regional control factors, causing a phase displacement in the growth optima of microbial mats and bryozoans, thereby resulting in a rigid bryostromatolitic fabric.  相似文献   

10.
Coleoid cephalopods are characterized by internalization of their shell, and are divided into the ten‐armed Decabrachia (squids and cuttlefish) and the eight‐armed Vampyropoda (octopuses and vampire squid). They have a rich fossil record predominantly of the limited biomineralized skeletal elements they possess: arm hooks, statoliths, mouthparts (the buccal mass) and internal shell (gladius or pen), although exquisitely preserved soft tissue coleoids are known from several Lagerstätten worldwide. Recent studies have shown that although morphological similarities between extant decabrachian gladii and fossil examples exist, no known examples of fossil decabrachians are currently known. However, molecular clock data and phylogenetic bracketing suggest that they should be present in Lagerstätten that are rich in vampyropod soft tissue fossils (i.e. Hâkel and Hâdjoula Lagerstätten, Cretaceous, Lebanon). We propose that a hitherto unknown taphonomic bias pertaining to the differing methods of buoyancy control within coleoid groups limits preservation potential. Both negatively and neutrally buoyant decabrachians use chemical buoyancy control (ammonia) whereas vampyropods do not. In the event of rapid burial in an environment conducive to exceptional preservation, ammonia dramatically decreases the ability of the decabrachian carcass to generate the required pH for authigenic calcium phosphate replacement, limiting its preservation potential. Moreover, the greater surface area and comparatively fragile dermis further decrease the potential for fossilization. This taphonomic bias may have contributed to the lack of preserved labile soft‐tissues in other cephalopods groups such as the ammonoids.  相似文献   

11.
Bacteriohopanepolyols (BHPs) are bacterial membrane lipids that may be used as biological or environmental biomarkers. Previous studies have described the diversity, distribution, and abundance of BHPs in a variety of modern environments. However, the regulation of BHP production in polar settings is not well understood. Benthic microbial mats from ice‐covered lakes of the McMurdo Dry Valleys, Antarctica provide an opportunity to investigate the sources, physiological roles, and preservation of BHPs in high‐latitude environments. Lake Vanda is one of the most stable lakes on Earth, with microbial communities occupying specific niches along environmental gradients. We describe the influence of mat morphology and local environmental conditions on the diversity and distribution of BHPs and their biological sources in benthic microbial mats from Lake Vanda. The abundance and diversity of C‐2 methylated hopanoids (2‐MeBHP) are of particular interest, given that their stable degradation products, 2‐methylhopanes, are among the oldest and most prevalent taxonomically informative biomarkers preserved in sedimentary rocks. Furthermore, the interpretation of sedimentary 2‐methylhopanes is of great interest to the geobiology community. We identify cyanobacteria as the sole source of 2‐MeBHP in benthic microbial mats from Lake Vanda and assess the hypothesis that 2‐MeBHP are regulated in response to a particular environmental variable, namely solar irradiance.  相似文献   

12.
Hydrothermal activity was common on the early Earth and associated micro‐organisms would most likely have included thermophilic to hyperthermophilic species. 3.5–3.3 billion‐year‐old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro‐organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro‐organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro‐organisms were placed in a silica‐saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro‐organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils.  相似文献   

13.
The first avian fossil recovered from high-temperature hot spring deposits is a three-dimensional external body mould of an American coot (Fulica americana) from Holocene sinters of Yellowstone National Park, Wyoming, USA. Silica encrustation of the carcass, feathers and colonizing microbial communities occurred within days of death and before substantial soft tissue degradation, allowing preservation of gross body morphology, which is usually lost under other fossilization regimes. We hypothesize that the increased rate and extent of opal-A deposition, facilitated by either passive or active microbial mediation following carcass colonization, is required for exceptional preservation of relatively large, fleshy carcasses or soft-bodied organisms by mineral precipitate mould formation. We suggest physico-chemical parameters conducive to similar preservation in other vertebrate specimens, plus distinctive sinter macrofabric markers of hot spring subenvironments where these parameters are met.  相似文献   

14.
Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and exhumation. Determining which tissues are preserved and how biases affect their preservation pathways is important for interpreting fossils in phylogenetic, ecological, and evolutionary frameworks. Although laboratory decay experiments reveal important aspects of fossilization, applying the results directly to the interpretation of exceptionally preserved fossils may overlook the impact of other key processes that remove or preserve morphological information. Investigations of fossils preserving non‐biomineralized tissues suggest that certain structures that are decay resistant (e.g., the notochord) are rarely preserved (even where carbonaceous components survive), and decay‐prone structures (e.g., nervous systems) can fossilize, albeit rarely. As we review here, decay resistance is an imperfect indicator of fossilization potential, and a suite of biological and geological processes account for the features preserved in exceptional fossils.  相似文献   

15.
16.
Microbially mediated calcification can be traced back for at least 2.6 billion years. Although morphological comparison of fossil and recent microbial carbonates suggests that mineralization processes associated with cyanobacteria and their interactions with heterotrophic bacteria have remained similar from the Archaean until today, the metabolic and chemical details remain poorly constrained. Microbial consortia often exhibit an ability to change solution chemistry and control pH at the microscale, passively or actively. This leads to oversaturation of Ca2+ and ions and to the removal of kinetic inhibitors to carbonate precipitation, like sulphate or phosphate. The kinetic barriers of low carbonate ion activity, ion hydration and ion complexing, especially in saline waters, inhibit spontaneous carbonate mineral precipitation from saturated solutions but oxygenic photosynthesis and sulphate reduction by sulphate‐reducing bacteria can overcome these natural barriers. Sulphate in seawater tends to form pairs with Ca2+ and Mg2+ ions. The removal of sulphate reduces complexing, raises carbonate alkalinity, and along with pyrite formation, enhances carbonate precipitation. Cyanobacteria can store Ca2+ and Mg2+ ions in organic envelopes and precipitate carbonates within their sheaths and extracellular polymeric substances, thus, triggering sedimentary carbonate production. We propose that this interplay of cyanobacteria and heterotrophic bacteria has been the major contributor to the carbonate factory for the last 3 billion years of Earth history.  相似文献   

17.
Calcified cyanobacterial microfossils are common in carbonate environments through most of the Phanerozoic, but are absent from the marine rock record over the past 65 Myr. There has been long-standing debate on the factors controlling the formation and temporal distribution of these fossils, fostered by the lack of a suitable modern analog. We describe calcified cyanobacteria filaments in a modern marine reef setting at Highborne Cay, Bahamas. Our observations and stable isotope data suggest that initial calcification occurs in living cyanobacteria and is photosynthetically induced. A single variety of cyanobacteria, Dichothrix sp., produces calcified filaments. Adjacent cyanobacterial mats form well-laminated stromatolites, rather than calcified filaments, indicating there can be a strong taxonomic control over the mechanism of microbial calcification. Petrographic analyses indicate that the calcified filaments are degraded during early diagenesis and are not present in well-lithified microbialites. The early diagenetic destruction of calcified filaments at Highborne Cay indicates that the absence of calcified cyanobacteria from periods of the Phanerozoic is likely to be caused by low preservation potential as well as inhibited formation.  相似文献   

18.
Extensive microbial mats colonize sandy tidal flats that form along the coasts of today's Earth. The microbenthos (mainly cyanobacteria) respond to the prevailing physical sediment dynamics by biostabilization, baffling and trapping, as well as binding. This biotic-physical interaction gives rise to characteristic microbially induced sedimentary structures (MISS) that differ greatly from both purely physical structures and from stromatolites. Actualistic studies of the MISS on modern tidal flats have been shown to be the key for understanding equivalent fossil structures that occur in tidal and shelf sandstones of all Earth ages. However, until now the fossil record of Archean MISS has been poor, and relatively few specimens have been found. This paper describes a study location that displays a unique assemblage with a multitude of exceptionally preserved MISS in the 2.9-Ga-old Pongola Supergroup, South Africa. The 'Nhlazatse Section' includes structures such as 'erosional remnants and pockets', 'multidirected ripple marks', 'polygonal oscillation cracks', and 'gas domes'. Optical and geochemical analyses support the biogenicity of microscopic textures such as filamentous laminae or 'orientated grains'. Textures resembling filaments are lined by iron oxide and hydroxides, as well as clay minerals. They contain organic matter, whose isotope composition is consistent with carbon of biological origin. The ancient tidal flats of the Nhlazatse Section record four microbial mat facies that occur in modern tidal settings as well. We distinguish endobenthic and epibenthic microbial mats, including planar, tufted, and spongy subtypes. Each microbial mat facies is characterized by a distinct set of MISS, and relates to a typical tidal zone. The microbial mat structures are preserved in situ, and are consistent with similar features constructed today by benthic cyanobacteria. However, other mat-constructing microorganisms also could have formed the structures in the Archean tidal flats.  相似文献   

19.
Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental investigation. To remedy this, we undertook an experimental study of the decay of the brine shrimp Artemia, examining the roles of autolysis, microbial activity, oxygen diffusion and reducing conditions. Our findings indicate that endogenous gut bacteria are the main factor controlling decay. Following gut wall rupture, but prior to cuticle failure, gut-derived microbes spread into the body cavity, consuming tissues and forming biofilms capable of mediating authigenic mineralization, that pseudomorph tissues and structures such as limbs and the haemocoel. These observations explain patterns observed in exceptionally preserved fossil arthropods. For example, guts are preserved relatively frequently, while preservation of other internal anatomy is rare. They also suggest that gut-derived microbes play a key role in the preservation of internal anatomy and that differential preservation between exceptional deposits might be because of factors that control autolysis and microbial activity. The findings also suggest that the evolution of a through gut and its bacterial microflora increased the potential for exceptional fossil preservation in bilaterians, providing one explanation for the extreme rarity of internal preservation in those animals that lack a through gut.  相似文献   

20.
The community structure and physiological characteristics of three microbial mat communities in Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) were compared. One of the mats was located at the edge of a stream and was dominated by diatoms (with a thin basal layer of oscillatorian cyanobacteria), whereas the other two mats, located over moist soil and the bottom of a pond, respectively, were dominated by cyanobacteria throughout their vertical profiles. The predominant xanthophyll was fucoxanthin in the stream mat and myxoxanthophyll in the cyanobacteria-dominated mats. The sheath pigment scytonemin was absent in the stream mat but present in the soil and pond mats. The stream mat showed significantly lower delta13C and higher delta15N values than the other two mats. Consistent with the delta15N values, N2 fixation was negligible in the stream mat. The soil mat was the physiologically most active community. It showed rates of photosynthesis three times higher than in the other mats, and had the highest rates of ammonium uptake, nitrate uptake and N2 fixation. These observations underscore the taxonomic and physiological diversity of microbial mat communities in the maritime Antarctic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号