首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have confirmed that coenzyme A is required for rat fatty acid synthetase activity (T. C. Linn, M. J. Stark, and P. A. Srere, 1980, J. Biol. Chem.255, 1388–1392). When rat liver or mammary gland fatty acid synthetase was assayed in the presence of a CoA-scavenging system such as ATP citrate lyase, almost complete inhibition of fatty acid synthesis was observed. The inhibition was reversed by addition of CoA or pantetheine, but not by addition of N-acetylcysteamine or other thiols. In the absence of CoA, the rate of elongation of acyl moieties on both native fatty acid synthetase and fatty acid synthetase lacking the chain-terminating thioesterase I component (trypsinized fatty acid synthetase) was reduced 100-fold. All of the palmitate synthesized slowly by the CoA-depleted native multienzyme was released, by the thioesterase I component, as the free fatty acid; only shorter-chainlength acyl moieties remained bound to the enzyme. The acyl-S-multienzyme thioesters formed by the trypsinized fatty acid synthetase in the absence of CoA contained saturated moieties of chain length C6-C16; addition of CoA promoted elongation of the acyl-S-multienzyme thioesters without release from the enzyme. The transfer of acetyl and malonyl moieties from CoA to the multienzyme, the reduction of S-acetoacetyl-N-acetylcysteamine and S-crotonyl-N-acetylcysteamine, and the dehydration of S-β-hydroxybutyryl-N-acetylcysteamine, reactions catalyzed by the fatty acid synthetase, were not dependent on the presence of CoA. The hydrolysis of acyl-S-multienzyme catalyzed by thioesterase I, the resident chain-terminating component of the fatty acid synthetase, and thioesterase II, a monofunctional mammary gland chain-terminating enzyme, was also independent of CoA availability as was hydrolysis of an acyl-S-pantetheine pentapeptide isolated from the multienzyme. On the basis of these observations we conclude that CoA is required for the elongation of acyl moieties on the fatty acid synthetase but not for their release from the multienzyme.  相似文献   

2.
The following new compounds were prepared and characterized: N-benzyl-oxycarbonyl-O-(tetra-O-acetyl-β-D-glucopyranosyl)-N-glycyl-L-serine methyl ester (1) and L-threonine methyl ester (2), N-benzyloxycarbonyl-O-(β-D-glucopyranosyl)-N-glycyl-L-serine amide (3), N-benzyloxycarbonyl-O-(β-D-glucopyranosyl)-N-glycyl-L-threonine methyl ester (4) and L-threonine amide (5), N-benzyloxycarbonyl-O-(tri-O-acetyl-2-deoxy-2-trifluoroacetamido-β-D-glucopyranosyl)-N-glycyl-L-serine methyl ester (6), and N-benzyloxycarbonyl-O-(2-deoxy-2-trifluoroacetamido-β-D-glucopyranosyl)-N-glycyl-L-serine amide (7). Although various modifications of the Koenigs-Knorr synthesis were used, the best, over-all yields of the deacetylated dipeptide derivatives were only 5–10%. Although the products are alkali-labile, deacetylation was accomplished with methanolic ammonia. Of the deacetylated products, the threonine derivatives (4 and 5) were more rapidly hydrolyzed by acids than phenyl β-D-glucopyranoside, which in turn was more rapidly cleaved than the serine derivatives (3 and 7). The stabilities of 3, 4, 5, and 7 to sodium hydroxide and sodium borohydride were similar, and essentially complete β-elimination of the glycosyl residue occurred for the amide derivatives (3, 5, and 7). For the ester derivative 4, pH 9 was optimal; above this pH, ester hydrolysis was more rapid than β-elimination, and the resulting carboxyl derivatives did not undergo β-elimination. Under optimal conditions with sodium borohydride, the β-elimination reaction was complete, but the corresponding alanine and α-aminobutyric acid residues were not formed; presumably reductions to the amino alcohols occurred. A mechanism for the β-elimination is proposed.  相似文献   

3.
A comparison was made of the structural features of thiol compounds which can interact with the mammalian fatty acid synthetase. Three functional characteristics were examined: (i) the ability of the free thiols, at low concentrations, to satisfy the essential thiol requirement of the enzyme, (ii) the ability of the free thiols, at higher concentrations, to inhibit enzyme activity, and (iii) the ability of the malonyl esters of these thiol compounds to act as substrates for fatty acid synthesis. The relative effectiveness of the various thiols studied was identical in all three roles. Coenzyme A and N-hexanoylcysteamine were the most effective, pantetheine and N-butyrylcysteamine were less effective, and N-acetylcysteamine was totally ineffective. These results lend strong support to our hypothesis (A. Stern, B. Sedgwick, and S. Smith, 1982, J. Biol. Chem.257, 799–803) that the various effects of CoA and structurally related thiols are localized at one and the same site, namely, the site of transfer of substrates between coenzyme A ester form and enzyme-bound form.  相似文献   

4.
A series of sixteen β-carbolines, bearing chalcone moiety at C-1 position, were prepared from easily accessible 1-acetyl-β-carboline and various aldehydes under basic conditions followed by N2-alkylation using different alkyl bromides. The prepared compounds were evaluated for in vitro cytotoxicity against a panel of human tumor cell lines. N2-Alkylated-β-carboline chalcones 13a-i represented the interesting anticancer activities compared to N2-unsubstituted β-carboline chalcones 12a-g. Off the prepared β-carbolines, 13g exhibited broad spectrum of activity with IC50 values lower than 22.5?µM against all the tested cancer cell lines. Further, the N2-alkylated-β-carboline chalcone 13g markedly induced cell death in MDA-MB-231 cells by AO/EB staining assay. The most cytotoxic compound 13g possessed a relatively high drug score of 0.48. Additionally, the prepared β-carboline chalcones displayed moderate antibacterial activities against tested bacterial strains.  相似文献   

5.
Hydrolyses of N-trans-cinnamoylimidazole (1) and N-acetylimidazole (2) were accelerated by cyclohexaamylose (α-CA) and cycloheptaamylose (β-CA) at 25°C. The cleavage of the amide bond in 1 at pH 9.0 was accelerated by α-CA and β-CA by 28- and 38-fold, respectively, whereas the cleavage of the amide bond in 2 at pH 7.0 was accelerated by α-CA and β-CA by 50- and 28-fold, respectively. The β-CA-accelerated hydrolysis of 1 proceeded via binding, acylation of β-CA, and deacylation of β-CA trans-cinnamate, which is consistent with the pathway used by serine proteases. The deuterium oxide solvent isotope effects for acylation and deacylation steps indicate nucleophilic attack in acylation and general basic attack in deacylation. The present finding of the acceleration by cycloamyloses in the cleavages of amide bonds in 1 and 2 indicates that cycloamyloses are an excellent model for hydrolytic enzymes.  相似文献   

6.
The analogue 3-decynoyl-N-acetylcysteamine inhibits the synthesis of unsaturated fatty acids in Escherichia coli, resulting in the accumulation of saturated fatty acids in the membrane (Kass, 1968).In the presence of this analogue, DNA, RNA and protein synthesis continue at a linear rate for approximately two doubling times, and then cease. On the other hand, the analogue will inhibit the formation of new replication forks (premature initiation), which normally arise as a result of thymine starvation.Unlike other temperature-sensitive DNA mutants, mutants that are defective in initiating DNA replication (dnaA or dnaC) are unable to replicate DNA at a permissive temperature if they terminate replication at 42 °C in the presence of 3-decynoyl-N-acetylcysteamine.When replication is terminated at 42 °C, cultures of dnaA or dnaC mutants normally will reinitiate replication upon lowering the temperature to 30 °C. For each mutant this reinitiation is characterized by a particular temperature sensitivity. Such mutants become more temperature sensitive if the temperature is lowered in the presence of 3-decynoyl-N-acetylcysteamine. All the effects of this analogue can be reversed by the addition of unsaturated fatty acids.These results are interpreted using a model in which replication is initiated at a particular lipid site on the membrane. In the absence of unsaturated fatty acids functional lipid sites are not made. Functional sites, however, can be used again provided they are not inactivated by interaction with an inactive dnaA or dnaC product.  相似文献   

7.
2,3,5-Tri-O-benzyl-D-arabinofuranosyl bromide (4) was converted into 2,5-anhydro-3,4,6-tri-O-benzyl-D-glucononitrile (5), mixed with 20% of the D-manno epimer 6. The mixture was reduced to the amine 7, which via the N-nitrosoacetamide 10 afforded the 1-deoxy-l-diazo sugar 11. Dipolar addition to dimethyl acetylene-dicarboxylate afforded the C-nucleoside derivative, dimethyl 3-(2,3,5-tri-O-benzyl-α-β-D-arabinofuranosyl)pyrazole-4,5-dicarboxylate (20). Selective ammonolysis afforded the 4-ester-5-carboxamide 21, which was separated chromatographically into the α-(minor) and β-(major) anomers. Hydrazinolysis and Curtius reaction of the pair of 4-acid hydrazides (α-22 and β-22) afforded the anomeric 3-glycosyl-1H-pyrazolo-[4,3-d]pyrimidine-5,7-diones (α-24 and β-24). Hydrogenolytic debenzylation yielded the β-D)-arabino epimer (1) of oxoformycin B, and the α-D-arabino form 2. These anomeric C-nucleosides were distinguished by circular dichroism spectra that showed the same relationship as α- and β-D-arabino anomers of normal purine nucleosides.  相似文献   

8.
Ethyl isopropenyl ether reacts with D-glucose in N,N-dimethylformamide containing a trace of p-toluenesulfonic acid to give crystalline 4,6-O-isopropylidene-α,β-D-glucopyranose (2) in near-quantitative yield. The structure of 2 was established by n.m.r. spectroscopy of it and of its β-triacetate 3, and by conversion of 3 through deacetonation and subsequent acetylation into β-D-glucopyranose pentaacetate (5). The acetonation reagent operates under kinetic control, with favored attack at primary hydroxyl groups, instead of by the thermodynamic control associated with conventional acetonation methods. The reagents converts methyl α-D-glucopyranoside (7) into the 4,6-isopropylidene acetal 8, and D-mannitol (9) into a 2:1 mixture of the 1,2:5,6-di-isopropylidene acetal 10 and the 1,2:3,4:5,6-tri-isopropylidene acetal 11.  相似文献   

9.
In an effort to develop potent new antituberculous drugs effective against Mycobacterium tuberculosis, we have prepared series of cinnamic derivatives (thioesters and amides) with 4-hydroxy and 4-alkoxy groups and investigated the in vitro activities of these compounds. Among them some displayed a good in vitro antibacterial activity, such as (E)-N-(2-acetamidoethyl)-3-{4-[(E)-3,7-dimethylocta-2,6-dienyloxy]phenyl}acrylamide 4b that showed a minimum inhibitory concentration of 0.1 μg/mL (0.26 μM) against M. tuberculosis H37Rv.  相似文献   

10.
A set of racemic N-phenyl-substituted β-amidoamidines hydrochlorides 4, which are structurally related to natural antiviral agent amidinomycin (1), was synthesized in four steps starting from methacryloyl anilide (5). In the final step of the synthetic route, an uncommon monoacylation of β-aminoamidine 8 at the less reactive β-phenylamino-group took place. To rationalize this result, a mechanism which involves initial acylation at the more active amidine-function followed by intramolecular acyl-group transfer to β-phenylamino-group was suggested. All three β-amidoamidines 4df bearing long linear aliphatic chain (from n-C8H17 to n-C12H25) revealed significant in vitro activity against influenza A virus (H3N2) and modest cytotoxicity. The in vitro antiviral potency of 4d,e is 6–20 times greater than that of commercial rimantadine with lower EC50 values and higher therapeutic index. The non-toxic in vivo compounds 4df showed a beneficial protective effect in influenza A (H3N2) infected mice.  相似文献   

11.
Amino acids and low-MW carbohydrates of 18 red algae have been analyzed. Several non-protein amino acids have been identified, including pyrrolidine-2,5-dicarboxylic acid (3c) and N-methylmethionine sulfoxide (5), new natural products, and 13 known compounds, citrulline, β-alanine, γ-aminobutyric acid, baikiain (1), pipecolic acid (2), domoic acid (3a), kainic acid (3b), azetidine-2-carboxylic acid (4), methionine sulfoxide taurine, N-methyltaurine, N,N-dimethyltaurine and N,N,N-trimethyltaurine. Sugars present were mainly floridoside, isofloridoside and mannoglyceric acid. Details of the structural elucidation of new compounds are also given.  相似文献   

12.
To develop selective inhibitors for β-N-acetylhexosaminidases which are involved in a myriad of physiological processes, a series of novel thioglycosyl–naphthalimide hybrid inhibitors were designed, synthesized and evaluated for inhibition activity against glycosyl hydrolase family 20 and 84 (GH20 and GH84) β-N-acetylhexosaminidases. These compounds which incorporate groups with varied sizes and lengths at the linker region between thioglycosyl moiety and naphthalimide moiety are designed to improve the selectivity and stacking interactions. The GH84 human O-GlcNAcase (hOGA) was sensitive to the subtle changes in the linker region and the optimal choice is a small size linker with six atoms length. And the GH20 insect β-N-acetylhexosaminidase OfHex1 could tolerate compounds with a hydrophobic bulky linker. Especially, the compound 5c (hOGA, Ki?=?3.46?μM; OfHex1, Ki?>?200?μM) and the compound 6f (hOGA, Ki?>?200?μM; OfHex1, Ki?=?21.81?μM) displayed high selectivity. The molecular docking results indicated that the inhibition mechanism was different between the two families due to their different structural characteristics beyond the active sites. These results provide some promising clues to improve selectivity of potent molecules against β-N-acetylhexosaminidases.  相似文献   

13.
Benzylidenation of β-maltose monohydrate with α,α-dimethoxytoluene in N,N-dimethylformamide in the presence of p-toluenesulfonic acid gave, in 70% yield, 4′,6′-O-benzylidenemaltose, which was acetylated to afford, 1,2,3,6,2′,3′-hexa-O-acetyl-4′,6′-O-benzylidene-β-maltose (4). Removal of the benzylidene group of 4 gave 1,2,3,6,2′,3′-hexa-O-acetyl-β-maltose (5), which was transformed into 1,2,3,6,2′,3′,4′-hepta-O-acetyl-6′-O-p-tolylsulfonyl-β-maltose (8). Several 6′-substituted β-maltose heptaacetates were synthesized by displacement reactions of 8 with various nucleophiles. Condensation of 5 with 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl bromide, under catalysis by halide ion, followed by removal of protecting groups, furnished panose in good yield.  相似文献   

14.
Enzymatic synthesis of GlcNAc-terminated poly-N-acetyllactosamine β-glycosides GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)nGalβ1,4GlcNAcβ-pNP (n=1–4) was demonstrated using a transglycosylation reaction of Escherichia freundii endo-β-galactosidase. The enzyme catalyzed a transglycosylation reaction on GlcNAcβ1,3Galβ1,4GlcNAcβ-pNP (1), which served both as a donor and an acceptor, and converted 1 into p-nitrophenyl β-glycosides GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)1Galβ1,4GlcNAcβ-pNP (2), GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)2Galβ1,4GlcNAcβ-pNP (3), GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)3Galβ1,4GlcNAcβ-pNP (4) and GlcNAcβ1,3(Galβ1,4GlcNAcβ1,3)4Galβ1,4GlcNAcβ-pNP (5). When 2 was used as an initial substrate, it led to the preferential synthesis of nonasaccharide β-glycoside 4 to heptasaccharide β-glycoside 3. This suggests that 4 is directly synthesized by transferring the tetrasaccharide unit GlcNAcβ1,3Galβ1,4GlcNAcβ1,3Gal to nonreducing end GlcNAc residue of 2 itself. The efficiency of production of poly-N-acetyllactosamines by E. freundii endo-β-galactosidase was significantly enhanced by the addition of BSA and by a low-temperature condition. Resulting 2 and 3 were shown to be useful for studying endo-β-galactosidase-catalyzed hydrolytic and transglycosylation reactions.  相似文献   

15.
Peptide thioesters are important tools for the total synthesis of proteins using native chemical ligation (NCL). Preparation of glycopeptide thioesters, that enable the assembly of homogeneously glycosylated proteins, is complicated by the perceived fragile nature of the sugar moiety. Herein, we demonstrate the compatibility of thioester formation via NS acyl transfer with native N-glycopeptides and report observations that will aid in their preparation.  相似文献   

16.
In search of potent β3-adrenergic receptor agonists, a series of novel substituted 1,2,3,4-tetrahydroquinolin-6-yloxypropanes has been synthesized and evaluated for their β3-adrenergic receptor agonistic activity (ranging from ?17.73% to 90.64% inhibition at 10 μM) using well established Human SK-N-MC neuroblastoma cells model. Four molecules viz. 11, 15, 22 and 23 showed β3-AR agonistic IC50 value of 0.55, 0.59, 1.18 and 1.76 μM, respectively. These four candidates have been identified as possible leads for further development of β3-adrenergic receptor agonists for obesity and Type-II diabetes pharmacotherapy. The free OH and NH functions are found to be essential for β3-adrenergic receptor agonistic activity. Among the synthesized β3-adrenergic receptor agonists having 1,2,3,4-tetrahydroquinoline scaffold, the N-benzyl group is found to be superior over N-arylsulfonyl group. A putative pharmacophore model has been modeled considering the above four active molecules which distinguishes well between the active and inactive molecules.  相似文献   

17.
Prumycin (1) and related compounds have been synthesized from benzyl 2-(benzyloxycarbonyl)amino-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside (4). Benzoylation of 4, followed by deisopropylidenation, gave benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-β-d-glucofuranoside (6), which was converted, via oxidative cleavage at C-5–C-6 and subsequent reduction, into the related benzyl β-d-xylofuranoside derivative (7). Benzylation of 3-O-benzoyl-2-(benzyloxycarbonyl)-amino-2-deoxy-d-xylopyranose (8), derived from 7 by hydrolysis, afforded the corresponding derivatives (9, 11) of β- and α-d-xylopyranoside, and compound 7 as a minor product. Treatment of benzyl 3-O-benzoyl-2-(benzyloxycarbonyl)amino-2-deoxy-4-O-mesyl-β-d-xylopyranoside 10, formed by mesylation of 9, with sodium azide in N,N-dimethylformamide gave benzyl 4-azido-3-O-benzoyl-2-(benzyloxy-carbonyl)amino-2,4-dideoxy-α-l-arabinopyranoside (13), which was debenzoylated to compound 14. Selective reduction of the azide group in 14, and condensation of the 4-amine with N-[N-(benzyloxycarbonyl)-d-alaninoyloxy]succinimide, gave the corresponding derivative (15) of 1. Reductive removal of the protecting groups of 15 afforded 1. Prumycin analogs were also synthesized from compound 14. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

18.
Methyl 2,3-anhydro-4,6-O-benzylidene-3-C-nitro-β-d-allopyranoside (1), as well as its β-d-manno (2) and α- d-manno (3) isomers, reacted with dimethylamine to give the same, crystalline 3-(dimethylamino) adduct (4) of 1,5-anhydro-4,6-O-benzylidene-2-deoxy-2-(dimethylamino)-d-erythro-hex-1-en-3-ulose (5). The enulose 5 was obtained from 4 by the action of silica gel. Similarly, the β-d-gulo (6) and α-d-talo (7) stereoisomers of 13 afforded a 3-(dimethylamino) adduct (8) of the d-threo isomer (9) of 5. Reaction of dimethylamine with 5,6-anhydro-1,2-O-isopropylidene-6-C-nitro-α-d-glucofuranose (10) yielded a mixture of two diastereoisomeric (possibly anometic at C-6) 5-deoxy-5-(dimethylamino)-1,2-O-isopropylideric-α-d-hexodialdo-1,4:6,3-difuranoses (11). The β-glycoside 1 and the α-glycoside 3 reacted with methylmagnesium iodide to produce methyl 4,6-O-benzylidene-3-deoxy-3-C-methyl-3-(N-hydroxy-N-methylamino)-β- and -α-d-hexopyranosides (12) and (13), respectively; both products had the 1,2-trans configuration, but their configurations at the quaternary center C-3 have not been determined.  相似文献   

19.
In the search for potent and selective human β3-adrenergic receptor (AR) agonists as potential drugs for the treatment of obesity and noninsulin-dependent (type II) diabetes, a novel series of phenoxypropanolamine derivatives containing acetanilides were prepared and their biological activities were evaluated at the human β3-, β2-, and β1-ARs. Several of the analogues (21a, 21b, and 27a) exhibited potent agonistic activity at the β3-AR. Among the compounds described herein, the N-methyl-1-benzylimidazol-2-ylacetanilide derivative (21b) was found to be the most potent and selective β3-AR agonist, with an EC50 value of 0.28 μM and no agonistic activity for either the β1- or β2-AR. In addition, 21b showed significant hypoglycemic activity in a rodent diabetic model.  相似文献   

20.
Four bis-N-n-propyl analogues (36) in the uracil ring of two hybrid molecules (1 and 2) of caffeine and eudistomin D, a β-carboline alkaloid from a marine tunicate, were synthesized, and their affinity and selectivity for adenosine receptors A1, A2A, and A3 were examined. All the compounds (36) showed better potency as adenosine receptor ligands than caffeine. Bis-N-n-propylation (3 and 4, respectively) of the uracil ring in 1 and 2 resulted in higher affinity for A1 and A2A adenosine receptors. Furthermore, it was found that a compound (5) possessing a n-propyloxy group at C-7 in compound 3 with a nitrogen at the β-position of the pyridine ring (β-N type) enhanced remarkably affinity for adenosine receptor A3 subtype, while n-propyloxy substitution (compound 6) at C-5 in compound 4 with a nitrogen at the δ-position of the pyridine ring (δ-N type) reduced affinity for all the adenosine receptor, A1, A2A, and A3. Among all the compounds (16) examined, compound 5 showed the most potent affinity for adenosine receptor A3 subtype (Ki value, 0.00382 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号