首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landscape heterogeneity plays an important role in population structure and divergence, particularly for species with limited vagility. Here, we used a landscape genetic approach to identify how landscape and environmental variables affect genetic structure and color morph frequency in a polymorphic salamander. The eastern red‐backed salamander, Plethodon cinereus, is widely distributed in northeastern North America and contains two common color morphs, striped and unstriped, that are divergent in ecology, behavior, and physiology. To quantify population structure, rates of gene flow, and genetic drift, we amplified 10 microsatellite loci from 648 individuals across 28 sampling localities. This study was conducted in northern Ohio, where populations of P. cinereus exhibit an unusually wide range of morph frequency variation. To test whether genetic distance was more correlated with morph frequency, elevation, canopy cover, waterways, ecological niche or geographic distance, we used resistance distance and least cost path analyses. We then examined whether landscape and environmental variables, genetic distance or geographic distance were correlated with variation in morph frequency. Tests for population structure revealed three genetic clusters across our sampling range, with one cluster monomorphic for the striped morph. Rates of gene flow and genetic drift were low to moderate across sites. Genetic distance was most correlated with ecological niche, elevation and a combination of landscape and environmental variables. In contrast, morph frequency variation was correlated with waterways and geographic distance. Thus, our results suggest that selection is also an important evolutionary force across our sites, and a balance between gene flow, genetic drift and selection interact to maintain the two color morphs.  相似文献   

2.
Studies of heritable colour polymorphisms allow investigators to track the genetic dynamics of natural populations. By comparing polymorphic populations over large geographic areas and across generations, issues about both morph stability and evolutionary dynamics can be addressed, increasing our understanding of the potential mechanisms maintaining genetic polymorphisms. In the present study, we investigated population morph frequencies in a sex‐limited heritable colour polymorphic damselfly (Ischnura elegans, Vander Linden), with three discrete female morphs. We compared the frequencies of these three female morphs in 120 different populations from ten European countries at differing latitudes and longitudes. There were pronounced differences in morph frequencies both across the entire European biogeographic range, as well as at a smaller scale within regions. We also found considerable between‐population variation at the local scale within regions, particularly at the edges of the range of this species. We discuss these findings in the context of recent models of adaptive population divergence along the range of a species. This polymorphism is thus highly dynamic, with stable morph frequencies at the core of the species range but fluctuating morph dynamics at the range limits. We finish with a discussion of how local interactions and climatic factors can be expected to have a strong influence on the biogeographic patterns in this species and other sexually selected polymorphisms. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 775–785.  相似文献   

3.
Sexual selection is often viewed as a promoter of population divergence, although some forms of sexual selection could rather hamper divergence. In the present study, we investigated whether sexual selection promotes divergence in sexually‐selected traits. We studied population variation in sexual selection in relation to colour morph and body size in islet and mainland populations of the Skyros wall lizard (Podarcis gaigeae). Females were most likely to mate with orange‐throated males with small body sizes, and male body size and coloration were therefore subject to correlational sexual selection. By contrast, male mating probabilities were not affected by any female phenotypic character. We also found variation in a female resistance trait (escape propensity), with females being more prone to escape when exposed to males from other habitats. Sexual selection could potentially affect the frequencies of throat colour morphs in this species by favouring orange‐throated males of small body size, although there was no evidence of sexual selection for local mates or rare phenotypes. The results obtained in the present study thus do not support a role for sexual selection as a promoter of population divergence in this species. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 374–389.  相似文献   

4.
Abstract Species of Trillium in the subgenus Phyllantherum are either polymorphic for flower color, or monomorphic for flower color and related to a polymorphic species. This leads to the suggestion that polymorphic species may be the progenitors for monomorphic ones. For this to be true, it must be demonstrated that genetic divergence among flower morphs can occur within polymorphic populations. Genetic structure was assessed in a population of T. sessile that contains a polymorphism for flower color. A survey of 11 enzyme systems using starch gel electrophoresis revealed three polymorphic loci: 6PGD-1, AAT-1 and AAT-2. Analysis of large and small scale spatial structure, stage classes, and flower color classes revealed significant genetic divergence in all instances. Spatial structure in the population is likely a result of genetic neighborhoods which can maintain populational variation via random genetic drift. Genetic divergence of the yellow flower color morph was probably initiated through genetic drift since the morph occurs in low frequencies. The results imply that the initial genetic divergence of species in the subgenus can arise within polymorphic populations.  相似文献   

5.

Background  

Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations.  相似文献   

6.
Rapid evolutionary change over a few generations has been documented in natural populations. Such changes are observed as organisms invade new environments, and they are often triggered by changed interspecific interactions, such as differences in predation regimes. However, in spite of increased recognition of antagonistic male-female mating interactions, there is very limited evidence that such intraspecific interactions could cause rapid evolutionary dynamics in nature. This is because ecological and longitudinal data from natural populations have been lacking. Here we show that in a color-polymorphic damselfly species, male-female mating interactions lead to rapid evolutionary change in morph frequencies between generations. Field data and computer simulations indicate that these changes are driven by sexual conflict, in which morph fecundities are negatively affected by frequency- and density-dependent male mating harassment. These frequency-dependent processes prevent population divergence by maintaining a female polymorphism in most populations. Although these results contrast with the traditional view of how sexual conflict enhances the rate of population divergence, they are consistent with a recent theoretical model of how females may form discrete genetic clusters in response to male mating harassment.  相似文献   

7.
Abstract

Disassortative mating in distylous self-incompatible species should result in the equilibrium of morph types in natural populations. Deviation from isoplethy may affect pollen transfer, and in isolated populations it could lead to Allee effect and genetic drift. Pollen limitation has been found to occur in several distylous species, for which mating opportunities are actually reduced to half population. In this study, we investigated the reproductive features and pollination ecology of the narrow endemic Primula apennina. We recorded equilibrium of morph frequencies in the studied population, reflecting the comparable fecundity found in the two morphs. Long-styled flowers produce more pollen grains of smaller size than short-styled ones: we hypothesize that in thrum flowers, pollen is more easily removed by the insect pollinator Macroglossum stellatarum, resulting in equal pollen amounts carried to both short styles and long styles. This lower pollen transfer efficiency from long-styled to short-styled flowers is also reflected in legitimate pollen–ovule ratio values. Despite results show no evidence of imminent threats to population persistence at study site, the strict dependence on one or very few pollinator species, and ecological traits, may increase extinction risks in the long-term period.  相似文献   

8.
Despite the theoretical importance of stochastic processes in evolution there have been few empirical studies of the interaction between genetic drift and selection on the maintenance of polymorphisms in plant populations. We used computer models to investigate the interaction between drift and frequency-dependent selection in affecting style morph frequencies in populations of tristylous species. Drift produces a distinct pattern of morph frequency variation involving: 1) the loss of the S morph and, to a lesser extent, the M morph; 2) no consistent bias in frequencies within populations; 3) a restricted pattern of variation involving a deficiency of one morph and equal excesses of the other two. Morph frequencies were surveyed in 137 populations of Lythrum salicaria from both its native range in Europe (N = 35) and recent adventive range in Ontario (N = 102), and 133 populations of Decodon verticillatus from four regions in eastern North America with different glacial histories to assess these theoretical predictions. There was a negative relationship between morph loss and population size in both species; the relationship was weaker in D. verticillatus than in L. salicaria. Morph loss was more frequent in the adventive than native range of L. salicaria, and in populations of D. verticillatus from glaciated northern regions compared with the unglaciated southern portion of its range. Simulations incorporating variation in life history, regeneration strategy and mating patterns revealed that the degree of morph loss was strongly influenced by year to year survival, clonal propagation, self-fertilization and departures from disassortative mating. Comparing the pattern of morph frequency variation between species supported these predictions. Morph loss was lower in self-incompatible L. salicaria (0% in Europe; 23% in Ontario), which reproduces through seed compared to self-compatible, clonal D. verticillatus (52%). A stochastic model provides the most parsimonious explanation for observed patterns of morph frequency variation in both species.  相似文献   

9.
Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Qst (Pst) and Fst values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.  相似文献   

10.
11.
Disentangling the relative importance and potential interactions of selection and genetic drift in driving phenotypic divergence of species is a classical research topic in population genetics and evolutionary biology. Here, we evaluate the role of stochastic and selective forces on population divergence of a colour polymorphism in seven damselfly species of the genus Ischnura, with a particular focus on I. elegans and I. graellsii. Colour-morph frequencies in Spanish I. elegans populations varied greatly, even at a local scale, whereas more similar frequencies were found among populations in eastern Europe. In contrast, I. graellsii and the other five Ischnura species showed little variation in colour-morph frequencies between populations. F(ST)-outlier analyses revealed that the colour locus deviated strongly from neutral expectations in Spanish populations of I. elegans, contrasting the pattern found in eastern European populations, and in I. graellsii, where no such discrepancy between morph divergence and neutral divergence could be detected. This suggests that divergent selection has been operating on the colour locus in Spanish populations of I. elegans, whereas processes such as genetic drift, possibly in combination with other forms of selection (such as negative frequency-dependent selection), appear to have been present in other regions, such as eastern Europe. Overall, the results indicate that both selective and stochastic processes operate on these colour polymorphisms, and suggest that the relative importance of factors varies between geographical regions.  相似文献   

12.
A growing body of literature is recognizing that males may also play a role in the mating process by behaving non‐randomly toward potential female mates during courtship. In numerous species, discrete color polymorphisms in males are inferred to represent alternative mating tactics, which often correspond with concomitant asymmetries in ecology and behavior. In terms of their mating behavior, these ecological outcomes of a color polymorphism should affect a morph's likelihood and frequency of encountering females in a population, possibly favoring the evolution of morph‐specific mating preferences. Knowledge of how male morphs contribute to a species’ overall mating dynamics will improve our understanding of how sexual selection shapes phenotypic diversity in color polymorphic systems. We conducted a mate choice experiment to evaluate the extent and morph specificity of non‐random mating preferences by male ornate tree lizards, Urosaurus ornatus. We observed the behavior of blue and yellow males in an experimental arena in response to a choice between an orange or yellow female. We found that blue males preferred yellow females over orange females, and although yellow males visited females more often than blue males overall, their attention was not morph‐specific. Given male morph differences in choosiness, and their differences in social dominance, we conclude that female throat color may be partly under sexual selection in U. ornatus. However, a lack of concordance between male and female mating preferences (drawn from an earlier study) suggests that overall mating dynamics may serve to maintain, rather than enhance, color morph differences in this species.  相似文献   

13.
Fruit colour polymorphisms are widespread in nature, but their ecological and evolutionary dynamics remain poorly understood. Here we examine Acacia ligulata, a shrub of the Australian arid zone which exhibits a red/orange/yellow aril colour polymorphism. We asked whether the polymorphism had a genetic basis; whether selection acted differentially on morphs during the seed and seedling stages; whether geographic variation in morph frequencies was correlated with environmental factors; and whether morphs differed in physical or chemical characteristics that might influence selection on them. When grown to maturity in a common greenhouse environment, maternal families of seeds showed phenotypic patterns consistent with biparental genetic control of the polymorphism. In contrast to other fruit-colour polymorphic species, progeny of A. ligulata morphs did not vary in rates of seedling emergence or survival in a common garden. Sampling along a 580 km transect revealed clinal variation in morph frequencies. Frequencies of the yellow morph decreased, and frequencies of the red morph increased, across a gradient of decreasing temperature and increasing rainfall. Morphs did not differ in seed mass, aril mass, or in profiles of fatty acids and flavonoids in either arils or seeds. However, morphs showed consistent differences in carotenoid profiles' and elemental content of arils, suggesting that selection by avian and insect seed dispersers, seed predators and herbivores should be investigated. These patterns indicate that both abiotic and biotic factors may contribute to selection on the A. ligulata polymorphism. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Long pelagic larval phases and the absence of physical barriers impede rapid speciation and contrast the high diversity observed in marine ecosystems such as coral reefs. In this study, we used the three‐spot dascyllus (Dascyllus trimaculatus) species complex to evaluate speciation modes at the spatial scale of the Indo‐Pacific. The complex includes four recognized species and four main color morphs that differ in distribution. Previous studies of the group using mitochondrial DNA revealed a noncongruence between color morphs and genetic groupings; with two of the color morphs grouped together and one color morph separated into three clades. Using extensive geographic sampling of 563 individuals and a combination of mitochondrial DNA sequences and 13 nuclear microsatellites, we defined population/species boundaries and inferred different speciation modes. The complex is composed of seven genetically distinct entities, some of which are distinct morphologically. Despite extensive dispersal abilities and an apparent lack of barriers, observed genetic partitions are consistent with allopatric speciation. However, ecological pressure, assortative mating, and sexual selection, were likely important during periods of geographical isolation. This study therefore suggests that primarily historical factors later followed by ecological factors caused divergence and speciation in this group of coral reef fish.  相似文献   

15.
Speciation and sexual isolation often occur when divergent female mating preferences target male secondary sexual traits. Despite the importance of such male signals, little is known about their evolvability and genetic linkage to other traits during speciation. To answer these questions, we imposed divergent artificial selection for 10 non-overlapping generations on the Inter-Pulse-Interval (IPI) of male courtship songs; which has been previously shown to be a major species recognition trait for females in the Drosophila athabasca species complex. Focusing on one of the species, Drosophila mahican (previously known as EA race), we examined IPI's: (1) rate of divergence, (2) response to selection in different directions, (3) genetic architecture of divergence and (4) by-product effects on other traits that have diverged in the species complex. We found rapid and consistent response for higher IPI but less response to lower IPI; implying asymmetrical constraints. Genetic divergence in IPI differed from natural species in X versus autosome contribution and in dominance, suggesting that evolution may take different paths. Finally, selection on IPI did not alter other components of male songs, or other ecological traits, and did not cause divergence in female preferences, as evidenced by lack of sexual isolation. This suggests that divergence of male courtship song IPI is unconstrained by genetic linkage with other traits in this system. This lack of linkage between male signals and other traits implies that female preferences or ecological selection can co-opt and mould specific male signals for species recognition free of genetic constraints from other traits.  相似文献   

16.
The frequent transition from outcrossing to selfing in flowering plants is often accompanied by changes in multiple aspects of floral morphology, termed the “selfing syndrome.” While the repeated evolution of these changes suggests a role for natural selection, genetic drift may also be responsible. To determine whether selection or drift shaped different aspects of the pollination syndrome and mating system in the highly selfing morning glory Ipomoea lacunosa, we performed multivariate and univariate Qst‐Fst comparisons using a wide sample of populations of I. lacunosa and its mixed‐mating sister species Ipomoea cordatotriloba. The two species differ in early growth, floral display, inflorescence traits, corolla size, nectar, and pollen number. Our analyses support a role for natural selection driving trait divergence, specifically in corolla size and nectar traits, but not in early growth, display size, inflorescence length, or pollen traits. We also find evidence of selection for reduced herkogamy in I. lacunosa, consistent with selection driving both the transition in mating system and the correlated floral changes. Our research demonstrates that while some aspects of the selfing syndrome evolved in response to selection, others likely evolved due to drift or correlated selection, and the balance between these forces may vary across selfing species.  相似文献   

17.
There are currently few predictions about when evolutionary processes are likely to play an important role in structuring community features. Determining predictors that indicate when evolution is expected to impact ecological processes in natural landscapes can help researchers identify eco-evolutionary ‘hotspots', where eco-evolutionary interactions are more likely to occur. Using data collected from a survey in freshwater cladoceran communities, landscape population genetic data and phenotypic trait data measured in a common garden, we applied a Bayesian linear model to assess whether the impact of local trait evolution in the keystone species Daphnia magna on cladoceran community trait values could be predicted by population genetic properties (within-population genetic diversity, genetic distance among populations), ecological properties (Simpson's diversity, phenotypic divergence) or environmental divergence. We found that the impact of local trait evolution varied among communities. Moreover, community diversity and phenotypic divergence were found to be better predictors of the contribution of evolution to community trait values than environmental features or genetic properties of the evolving species. Our results thus indicate the importance of ecological context for the impact of evolution on community features. Our study also demonstrates one way to detect signatures of eco-evolutionary interactions in communities inhabiting heterogeneous landscapes using survey data of contemporary ecological and evolutionary structure.  相似文献   

18.
The presence of shell bands is common in gastropods. Both the marine snails Littorina fabalis and Lttorina saxatilis are polymorphic for this trait. Such polymorphism would be expected to be lost by the action of genetic drift or directional selection, but it appears to be widespread at relatively constant frequencies. This suggests it is maintained by balancing selection on the trait or on a genetically linked trait. Using long time series of empirical data, we compared potential effects of genetic drift and negative frequency‐dependent selection (NFDS) in the two species. The contribution of genetic drift to changes in the frequency of bands in L. fabalis was estimated using the effective population size estimated from microsatellite data, while the effect of genetic drift in L. saxatilis was derived from previously published study. Frequency‐dependent selection was assessed by comparing the cross‐product estimator of fitness with the frequency of the polymorphism across years using a regression analysis. Both studied species showed patterns of NFDS. In addition, in L. fabalis, contributions from genetic drift could explain some of the changes in banding frequency. Overdominance and heterogeneous selection did not fit well to our data. The possible biological explanations resulting in the maintenance of the banding polymorphism are discussed.  相似文献   

19.
The unique aspects of speciation and divergence in peripheral populations have long sparked much research. Unidirectional migration, received by some peripheral populations, can hinder the evolution of distinct differences from their founding populations. Here, we explore the effects that sexual selection, long hypothesized to drive the divergence of distinct traits used in mate choice, can play in the evolution of such traits in a partially isolated peripheral population. Using population genetic continent‐island models, we show that with phenotype matching, sexual selection increases the frequency of an island‐specific mating trait only when female preferences are of intermediate strength. We identify regions of preference strength for which sexual selection can instead cause an island‐specific trait to be lost, even when it would have otherwise been maintained at migration‐selection balance. When there are instead separate preference and trait loci, we find that sexual selection can lead to low trait frequencies or trait loss when female preferences are weak to intermediate, but that sexual selection can increase trait frequencies when preferences are strong. We also show that novel preference strengths almost universally cannot increase, under either mating mechanism, precluding the evolution of premating isolation in peripheral populations at the early stages of species divergence.  相似文献   

20.
For a quantitative trait under stabilizing selection, the effect of epistasis on its genetic architecture and on the changes of genetic variance caused by bottlenecking were investigated using theory and simulation. Assuming empirical estimates of the rate and effects of mutations and the intensity of selection, we assessed the impact of two‐locus epistasis (synergistic/antagonistic) among linked or unlinked loci on the distribution of effects and frequencies of segregating loci in populations at the mutation‐selection‐drift balance. Strong pervasive epistasis did not modify substantially the genetic properties of the trait and, therefore, the most likely explanation for the low amount of variation usually accounted by the loci detected in genome‐wide association analyses is that many causal loci will pass undetected. We investigated the impact of epistasis on the changes in genetic variance components when large populations were subjected to successive bottlenecks of different sizes, considering the action of genetic drift, operating singly (D), or jointly with mutation (MD) and selection (MSD). An initial increase of the different components of the genetic variance, as well as a dramatic acceleration of the between‐line divergence, were always associated with synergistic epistasis but were strongly constrained by selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号