首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the long‐term responses of marine phytoplankton to ongoing ocean acidification (OA) are appearing rapidly in the literature. However, only a few of these have investigated diatoms, which is disproportionate to their contribution to global primary production. Here we show that a population of the model diatom Phaeodactylum tricornutum, after growing under elevated CO2 (1000 μatm, HCL, pHT: 7.70) for 1860 generations, showed significant differences in photosynthesis and growth from a population maintained in ambient CO2 and then transferred to elevated CO2 for 20 generations (HC). The HCL population had lower mitochondrial respiration, than did the control population maintained in ambient CO2 (400 μatm, LCL, pHT: 8.02) for 1860 generations. Although the cells had higher respiratory carbon loss within 20 generations under the elevated CO2, being consistent to previous findings, they downregulated their respiration to sustain their growth in longer duration under the OA condition. Responses of phytoplankton to OA may depend on the timescale for which they are exposed due to fluctuations in physiological traits over time. This study provides the first evidence that populations of the model species, P. tricornutum, differ phenotypically from each other after having been grown for differing spans of time under OA conditions, suggesting that long‐term changes should be measured to understand responses of primary producers to OA, especially in waters with diatom‐dominated phytoplankton assemblages.  相似文献   

2.
Nitrogen fixation by diazotrophic cyanobacteria is a critical source of new nitrogen to the oligotrophic surface ocean. Research to date indicates that some diazotroph groups may increase nitrogen fixation under elevated pCO2. To test this in natural plankton communities, four manipulation experiments were carried out during two voyages in the South Pacific (30–35oS). High CO2 treatments, produced using 750 ppmv CO2 to adjust pH to 0.2 below ambient, and ‘Greenhouse’ treatments (0.2 below ambient pH and ambient temperature +3 °C), were compared with Controls in trace metal clean deckboard incubations in triplicate. No significant change was observed in nitrogen fixation in either the High CO2 or Greenhouse treatments over 5 day incubations. qPCR measurements and optical microscopy determined that the diazotroph community was dominated by Group A unicellular cyanobacteria (UCYN‐A), which may account for the difference in response of nitrogen fixation under elevated CO2 to that reported previously for Trichodesmium. This may reflect physiological differences, in that the greater cell surface area:volume of UCYN‐A and its lack of metabolic pathways involved in carbon fixation may confer no benefit under elevated CO2. However, multiple environmental controls may also be a factor, with the low dissolved iron concentrations in oligotrophic surface waters limiting the response to elevated CO2. If nitrogen fixation by UCYN‐A is not stimulated by elevated pCO2, then future increases in CO2 and warming may alter the regional distribution and dominance of different diazotroph groups, with implications for dissolved iron availability and new nitrogen supply in oligotrophic regions.  相似文献   

3.
Coccolithophores are important oceanic primary producers not only in terms of photosynthesis but also because they produce calcite plates called coccoliths. Ongoing ocean acidification associated with changing seawater carbonate chemistry may impair calcification and other metabolic functions in coccolithophores. While short‐term ocean acidification effects on calcification and other properties have been examined in a variety of coccolithophore species, long‐term adaptive responses have scarcely been documented, other than for the single species Emiliania huxleyi. Here, we investigated the effects of ocean acidification on another ecologically important coccolithophore species, Gephyrocapsa oceanica, following 1,000 generations of growth under elevated CO2 conditions (1,000 μatm). High CO2‐selected populations exhibited reduced growth rates and enhanced particulate organic carbon (POC) and nitrogen (PON) production, relative to populations selected under ambient CO2 (400 μatm). Particulate inorganic carbon (PIC) and PIC/POC ratios decreased progressively throughout the selection period in high CO2‐selected cell lines. All of these trait changes persisted when high CO2‐grown populations were moved back to ambient CO2 conditions for about 10 generations. The results suggest that the calcification of some coccolithophores may be more heavily impaired by ocean acidification than previously predicted based on short‐term studies, with potentially large implications for the ocean's carbon cycle under accelerating anthropogenic influences.  相似文献   

4.
Stomata help plants regulate CO2 absorption and water vapor release in response to various environmental changes, and plants decrease their stomatal apertures and enhance their water status under elevated CO2. Although the bottom‐up effect of elevated CO2 on insect performance has been extensively studied, few reports have considered how insect fitness is altered by elevated CO2‐induced changes in host plant water status. We tested the hypothesis that aphids induce stomatal closure and increase host water potential, which facilitates their passive feeding, and that this induction can be enhanced by elevated CO2. Our results showed that aphid infestation triggered the abscisic acid (ABA) signaling pathway to decrease the stomatal apertures of Medicago truncatula, which consequently decreased leaf transpiration and helped maintain leaf water potential. These effects increased xylem‐feeding time and decreased hemolymph osmolarity, which thereby enhanced phloem‐feeding time and increased aphid abundance. Furthermore, elevated CO2 up‐regulated an ABA‐independent enzyme, carbonic anhydrase, which led to further decrease in stomatal aperture for aphid‐infested plants. Thus, the effects of elevated CO2 and aphid infestation on stomatal closure synergistically improved the water status of the host plant. The results indicate that aphid infestation enhances aphid feeding under ambient CO2 and that this enhancement is increased under elevated CO2.  相似文献   

5.
The increasing concentration of carbon dioxide in atmosphere is not only a major cause of global warming, but it also adversely affects the ecological diversity of invertebrates. This study was conducted to evaluate the effect of elevated CO2 concentration (ambient, 400 ppm and high, 800 ppm) and Wolbachia (Wolbachia‐infected, W+ and Wolbachia‐uninfected, W?) on Hylyphantes graminicola. The total survival rate, developmental duration, carapace width and length, body weight, sex ratio, net reproductive rate, nutrition content, and enzyme activity in H. graminicola were examined under four treatments: W? 400 ppm, W? 800 ppm, W+ 400 ppm, and W+ 800 ppm. Results showed that Wolbachia‐infected spiders had significantly decreased the total developmental duration. Different instars showed variations up to some extent, but no obvious effect was found under elevated CO2 concentration. Total survival rate, sex ratio, and net reproductive rate were not affected by elevated CO2 concentration or Wolbachia infection. The carapace width of Wolbachia‐uninfected spiders decreased significantly under elevated CO2 concentration, while the width, length and weight were not significantly affected in Wolbachia‐infected spiders reared at ambient CO2 concentration. The levels of protein, specific activities of peroxidase, and amylase were significantly increased under elevated CO2 concentration or Wolbachia‐infected spiders, while the total amino content was only increased in Wolbachia‐infected spiders. Thus, our current finding suggested that elevated CO2 concentration and Wolbachia enhance nutrient contents and enzyme activity of H. graminicola and decrease development duration hence explore the interactive effects of factors which were responsible for reproduction regulation, but it also gives a theoretical direction for spider's protection in such a dynamic environment. Increased activities of enzymes and nutrients caused by Wolbachia infection aids for better survival of H. graminicola under stress.  相似文献   

6.
Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO2) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near‐future levels of pCO2 on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO2 treatments [Current‐day Control (430 μatm), Moderate (584 μatm) and High (1032 μatm)] for a 9‐month period that included the summer breeding season. Unexpectedly, increased CO2 dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO2 treatment. Pairs in the High CO2 group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO2 group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO2. However, any long‐term consequences of increased reproductive effort on individuals or populations remain to be determined.  相似文献   

7.
The combined effects of multiple predators often cannot be predicted from their independent effects. Emergent multiple predator effects (MPEs) include risk enhancement, where combined predators kill more prey than predicted by their individual effects, and risk reduction, where fewer prey are killed than predicted. Current methods for detecting MPEs are biased because they assume linear functional responses and/or no prey depletion. As a result, past studies overestimated the occurrence of risk enhancement for additive designs, and tended to overestimate the occurrence of risk reduction for substitutive designs. Characterising the predators' functional responses and accounting for prey depletion reduces biases in detection, estimation, interpretation and generalisation of the emergent effects of predator diversity on prey survival. These findings have implications beyond MPE's and should be considered in all studies aimed at understanding how multiple factors combine when demographic rates are density dependent.  相似文献   

8.
This study investigated the impact of predicted future climatic and atmospheric conditions on soil respiration (RS) in a Danish Calluna‐Deschampsia‐heathland. A fully factorial in situ experiment with treatments of elevated atmospheric CO2 (+130 ppm), raised soil temperature (+0.4 °C) and extended summer drought (5–8% precipitation exclusion) was established in 2005. The average RS, observed in the control over 3 years of measurements (1.7 μmol CO2 m?2 sec?1), increased 38% under elevated CO2, irrespective of combination with the drought or temperature treatments. In contrast, extended summer drought decreased RS by 14%, while elevated soil temperature did not affect RS overall. A significant interaction between elevated temperature and drought resulted in further reduction of RS when these treatments were combined. A detailed analysis of short‐term RS dynamics associated with drought periods showed that RS was reduced by ~50% and was strongly correlated with soil moisture during these events. Recovery of RS to pre‐drought levels occurred within 2 weeks of rewetting; however, unexpected drought effects were observed several months after summer drought treatment in 2 of the 3 years, possibly due to reduced plant growth or changes in soil water holding capacity. An empirical model that predicts RS from soil temperature, soil moisture and plant biomass was developed and accounted for 55% of the observed variability in RS. The model predicted annual sums of RS in 2006 and 2007, in the control, were 672 and 719 g C m?2 y?1, respectively. For the full treatment combination, i.e. the future climate scenario, the model predicted that soil respiratory C losses would increase by ~21% (140–150 g C m?2 y?1). Therefore, in the future climate, stimulation of C storage in plant biomass and litter must be in excess of 21% for this ecosystem to not suffer a reduction in net ecosystem exchange.  相似文献   

9.
In response to high CO2 environmental variability, green algae, such as Chlamydomonas reinhardtii, have evolved multiple physiological states dictated by external CO2 concentration. Genetic and physiological studies demonstrated that at least three CO2 physiological states, a high CO2 (0.5–5% CO2), a low CO2 (0.03–0.4% CO2) and a very low CO2 (< 0.02% CO2) state, exist in Chlamydomonas. To acclimate in the low and very low CO2 states, Chlamydomonas induces a sophisticated strategy known as a CO2‐concentrating mechanism (CCM) that enables proliferation and survival in these unfavorable CO2 environments. Active uptake of Ci from the environment is a fundamental aspect in the Chlamydomonas CCM, and consists of CO2 and HCO3 uptake systems that play distinct roles in low and very low CO2 acclimation states. LCI1, a putative plasma membrane Ci transporter, has been linked through conditional overexpression to active Ci uptake. However, both the role of LCI1 in various CO2 acclimation states and the species of Ci, HCO3 or CO2, that LCI1 transports remain obscure. Here we report the impact of an LCI1 loss‐of‐function mutant on growth and photosynthesis in different genetic backgrounds at multiple pH values. These studies show that LCI1 appears to be associated with active CO2 uptake in low CO2, especially above air‐level CO2, and that any LCI1 role in very low CO2 is minimal.  相似文献   

10.
Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.  相似文献   

11.
This work originates from three facts: (i) changes in CO2 availability influence metabolic processes in algal cells; (ii) Spatial and temporal variations of nitrogen availability cause repercussions on phytoplankton physiology; (iii) Growth and cell composition are dependent on the stoichiometry of nutritional resources. In this study, we assess whether the impact of rising pCO2 is influenced by N availability, through the impact that it would have on the C/N stoichiometry, in conditions of N sufficiency. Our experiments used the dinoflagellate Protoceratium reticulatum, which we cultured under three CO2 regimes (400, 1,000, and 5,000 ppmv, pH of 8.1) and either variable (the NO3? concentration was always 2.5 mmol · L?1) or constant (NO3? concentration varied to maintain the same Ci/NO3? ratio at all pCO2) Ci/NO3? ratio. Regardless of N availability, cells had higher specific growth rates, but lower cell dry weight and C and N quotas, at elevated CO2. The carbohydrate pool size and the C/N was unaltered in all treatments. The lipid content only decreased at high pCO2 at constant Ci/NO3? ratio. In the variable Ci/NO3? conditions, the relative abundance of Rubisco (and other proteins) also changed; this did not occur at constant Ci/NO3?. Thus, the biomass quality of P. reticulatum for grazers was affected by the Ci/NO3? ratio in the environment and not only by the pCO2, both with respect to the size of the main organic pools and the composition of the expressed proteome.  相似文献   

12.
To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade‐offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2 on four hypothesized trade‐offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade‐off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2 exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2. In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2 in two out of four milkweed species. Finally, previous exposure to elevated CO2 uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade‐offs.  相似文献   

13.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

14.
Predicted responses of transpiration to elevated atmospheric CO2 concentration (eCO2) are highly variable amongst process‐based models. To better understand and constrain this variability amongst models, we conducted an intercomparison of 11 ecosystem models applied to data from two forest free‐air CO2 enrichment (FACE) experiments at Duke University and Oak Ridge National Laboratory. We analysed model structures to identify the key underlying assumptions causing differences in model predictions of transpiration and canopy water use efficiency. We then compared the models against data to identify model assumptions that are incorrect or are large sources of uncertainty. We found that model‐to‐model and model‐to‐observations differences resulted from four key sets of assumptions, namely (i) the nature of the stomatal response to elevated CO2 (coupling between photosynthesis and stomata was supported by the data); (ii) the roles of the leaf and atmospheric boundary layer (models which assumed multiple conductance terms in series predicted more decoupled fluxes than observed at the broadleaf site); (iii) the treatment of canopy interception (large intermodel variability, 2–15%); and (iv) the impact of soil moisture stress (process uncertainty in how models limit carbon and water fluxes during moisture stress). Overall, model predictions of the CO2 effect on WUE were reasonable (intermodel μ = approximately 28% ± 10%) compared to the observations (μ = approximately 30% ± 13%) at the well‐coupled coniferous site (Duke), but poor (intermodel μ = approximately 24% ± 6%; observations μ = approximately 38% ± 7%) at the broadleaf site (Oak Ridge). The study yields a framework for analysing and interpreting model predictions of transpiration responses to eCO2, and highlights key improvements to these types of models.  相似文献   

15.
Both ocean acidification and viral infection bring about changes in marine phytoplankton physiological activities and community composition. However, little information is available on how the relationship between phytoplankton and viruses may be affected by ocean acidification and what impacts this might have on photosynthesis‐driven marine biological CO2 pump. Here, we show that when the harmful bloom alga Phaeocystis globosa is infected with viruses under future ocean conditions, its photosynthetic performance further decreased and cells became more susceptible to stressful light levels, showing enhanced photoinhibition and reduced carbon fixation, up‐regulation of mitochondrial respiration and decreased virus burst size. Our results indicate that ocean acidification exacerbates the impacts of viral attack on P. globosa, which implies that, while ocean acidification directly influences marine primary producers, it may also affect them indirectly by altering their relationship with viruses. Therefore, viruses as a biotic stressor need to be invoked when considering the overall impacts of climate change on marine productivity and carbon sequestration.  相似文献   

16.
From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO2 concentrations from 270 to 400 mol mol?1. The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of free‐air CO2 enrichment (FACE) experiments. These experiments have found (i) an increase in internal CO2 partial pressure (ci) alongside acclimation of photosynthetic capacity, (ii) variable decreases in stomatal conductance, and (iii) that increases in yield do not increase commensurate with CO2 concentrations. Our data set, which includes a 115‐year‐long selection of grasses collected in New Mexico since 1892, is consistent with an increased ci as a response to historical CO2 increase in the atmosphere, with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity Index (PDSI) for New Mexico indicates a moderate correlation with Δ13C (r2 = 0.32, P < 0.01) before 1950, with no correlation (r2 = 0.00, P = 0.91) after 1950. These results indicate that increased ci may have conferred some drought resistance to these grasses through increased availability of CO2 in the event of reduced stomatal conductance in response to short‐term water shortage. Comparison with C3 trees from arid environments (Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments (Bromus and Poa grasses in New Mexico) suggests differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO2 while wetter environments see increased ci. This study suggests that (i) the observed increases in ci in FACE experiments are consistent with historical CO2 increases and (ii) the CO2 increase influences plant sensitivity to water shortage, through either increased WUE or ci in arid and wet environments, respectively.  相似文献   

17.
The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10–20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems.  相似文献   

18.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   

19.
20.
Rising atmospheric CO2 levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO2 (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N‐fixing‐deficient mutant (dnf1) and its wild‐type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO2 increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO2 increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation‐related enzymes (glutamine synthetase, Glutamate synthase) and transamination‐related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO2. In contrast, aphid infested dnf1 plants had decreased activities of N assimilation‐related enzymes and transmination‐related enzymes and amino acid concentrations under elevated CO2. Furthermore, elevated CO2 up‐regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down‐regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号