共查询到20条相似文献,搜索用时 15 毫秒
1.
Qixin He Danielle L. Edwards L. Lacey Knowles 《Evolution; international journal of organic evolution》2013,67(12):3386-3402
Tests of the genetic structure of empirical populations typically focus on the correlative relationships between population connectivity and geographic and/or environmental factors in landscape genetics. However, such tests may overlook or misidentify the impact of candidate factors on genetic structure, especially when connectivity patterns differ between past and present populations because of shifting environmental conditions over time. Here we account for the underlying demographic component of population connectivity associated with a temporarily dynamic landscape in tests of the factors structuring population genetic variation in an Australian lizard, Lerista lineopunctulata, from 24 nuclear loci. Correlative tests did not support significant effect from factors associated with a static contemporary landscape. However, spatially explicit demographic modeling of genetic differentiation shows that changes in environmental conditions (as estimated from paleoclimatic data) and corresponding distributional shifts from the past to present landscape significantly structures genetic variation. Results from model‐based inference (i.e., from an integrative modeling approach that generates spatially explicit expectations that are tested with approximate Bayesian computation) contrasts with those from correlative analyses, highlighting the importance of expanding the landscape genetic perspective to tests the links between pattern and process, revealing how factors shape patterns of genetic variation within species. 相似文献
2.
The formal processes of alpha-taxonomy ensure that species have uniquenames and can be identified. No similar process is mandatory forinfraspecific variation, so the species is a uniquely importantpractical term. At present, there is little agreement of the definitionof a species. In the last 30 years, numerous concepts have beenproposed. The nature of fish species is reviewed. Clonal inheritance ofnuclear genes occurs in several lineages. Hybridization is frequent,often leading to introgression, which may lead to extinction of species.Species may have hybrid origins. There is good evidence for parallelspeciation in similar habitats. There are clearly exceptions to thecladistic assumption of dichotomous branching during speciation. Siblingspecies may exist with no discernible niche differentiation.Basic assumptions are violated for the recognition, phylogenetic,ecological and some formulations of the evolutionary species concepts.The most satisfactory definitions are two of the earliest proposed inthe light of evolutionary theory. The Darwinian view is that species arerecognizable entities which are not qualitatively distinct fromvarieties. A restatement of this concept in genetic terms provides ameans of dealing with all forms of species known in present-day fishes.This modified Darwinian concept is operated through the application offuzzy logic rather than rigid definition. This involves a search fordiscontinuities between species, rather than an a priori definition ofhow boundaries are to be determined. A subset of Darwinian species areMayrian or biological species, which are characterized by theirdemonstrable reproductive isolation from other species. The status of apopulation as a Mayrian species is a testable hypothesis. Moleculartechniques allow this hypothesis to be tested more easily thanpreviously, at least when dealing with sympatric populations. 相似文献
3.
A vectorized method of importance sampling with applications to models of mutation and migration 总被引:1,自引:0,他引:1
Slatkin M 《Theoretical population biology》2002,62(4):339-348
An importance-sampling method is presented for computing the likelihood of the configuration of population genetic data under general assumptions about population history and transitions among states. The configuration of the data is the number of chromosomes sampled that are in each of a finite set of states. Transitions among states are governed by a Markov chain with transition probabilities dependent on one or more parameters. The method assumes that the joint distribution of coalescence times of the underlying gene genealogy is independent of the genetic state of each lineage. Given a set of coalescence times, the probability that a pair of lineages is chosen to coalesce in each replicate is proportional to the contribution that the coalescence event makes to the probability of the data. This method can be applied to gene genealogies generated by the neutral coalescent process and to genealogies generated by other processes, such as a linear birth-death process which provides a good approximation to the dynamics of low-frequency alleles. Two applications are described. In the first, the fit of allele frequencies at two microsatellite loci sampled in a Sardinian population to the one-step mutation model is tested. The one-step model is rejected for one locus but not for the other. The second application is to low-frequency alleles in a geographically subdivided population. The geographic location is the allelic state, and the alleles are assumed to be sufficiently rare that their dynamics can be approximated by a linear birth-death process in which the birth and death rates are independent of geographic location. The analysis of eight low-frequency allozyme alleles found in the glaucous-winged gull, Larus glaucescens, illustrates how geographically restricted dispersal can be detected. 相似文献
4.
Molecular methods as applied to the biogeography of single species (phylogeography) or multiple codistributed species (comparative phylogeography) have been productively and extensively used to elucidate common historical features in the diversification of the Earth's biota. However, only recently have methods for estimating population divergence times or their confidence limits while taking into account the critical effects of genetic polymorphism in ancestral species become available, and earlier methods for doing so are underutilized. We review models that address the crucial distinction between the gene divergence, the parameter that is typically recovered in molecular phylogeographic studies, and the population divergence, which is in most cases the parameter of interest and will almost always postdate the gene divergence. Assuming that population sizes of ancestral species are distributed similarly to those of extant species, we show that phylogeographic studies in vertebrates suggest that divergence of alleles in ancestral species can comprise from less than 10% to over 50% of the total divergence between sister species, suggesting that the problem of ancestral polymorphism in dating population divergence can be substantial. The variance in the number of substitutions (among loci for a given species or among species for a given gene) resulting from the stochastic nature of DNA change is generally smaller than the variance due to substitutions along allelic lines whose coalescence times vary due to genetic drift in the ancestral population. Whereas the former variance can be reduced by further DNA sequencing at a single locus, the latter cannot. Contrary to phylogeographic intuition, dating population divergence times when allelic lines have achieved reciprocal monophyly is in some ways more challenging than when allelic lines have not achieved monophyly, because in the former case critical data on ancestral population size provided by residual ancestral polymorphism is lost. In the former case differences in coalescence time between species pairs can in principle be explained entirely by differences in ancestral population size without resorting to explanations involving differences in divergence time. Furthermore, the confidence limits on population divergence times are severely underestimated when those for number of substitutions per site in the DNA sequences examined are used as a proxy. This uncertainty highlights the importance of multilocus data in estimating population divergence times; multilocus data can in principle distinguish differences in coalescence time (T) resulting from differences in population divergence time and differences in T due to differences in ancestral population sizes and will reduce the confidence limits on the estimates. We analyze the contribution of ancestral population size (theta) to T and the effect of uncertainty in theta on estimates of population divergence (tau) for single loci under reciprocal monophyly using a simple Bayesian extension of Takahata and Satta's and Yang's recent coalescent methods. The confidence limits on tau decrease when the range over which ancestral population size theta is assumed to be distributed decreases and when tau increases; they generally exclude zero when tau/(4Ne) > 1. We also apply a maximum-likelihood method to several single and multilocus data sets. With multilocus data, the criterion for excluding tau = 0 is roughly that l tau/(4Ne) > 1, where l is the number of loci. Our analyses corroborate recent suggestions that increasing the number of loci is critical to decreasing the uncertainty in estimates of population divergence time. 相似文献
5.
6.
Courtney M. Clark Kenneth Petren 《Evolution; international journal of organic evolution》2014,68(10):2932-2944
Many classic examples of adaptive radiations take place within fragmented systems such as islands or mountains, but the roles of mosaic landscapes and variable gene flow in facilitating species diversification is poorly understood. Here we combine phylogenetic and landscape genetic approaches to understand diversification in Darwin's finches, a model adaptive radiation. We combined sequence data from 14 nuclear introns, mitochondrial markers, and microsatellite variation from 51 populations of all 15 recognized species. Phylogenetic species‐trees recovered seven major finch clades: ground, tree, vegetarian, Cocos Island, grey and green warbler finches, and a distinct clade of sharp‐beaked ground finches (Geospiza cf. difficilis) basal to all ground and tree finches. The ground and tree finch clades lack species‐level phylogenetic structure. Interisland gene flow and interspecies introgression vary geographically in predictable ways. First, several species exhibit concordant patterns of population divergence across the channel separating the Galápagos platform islands from the separate volcanic province of northern islands. Second, peripheral islands have more admixed populations while central islands maintain more distinct species boundaries. This landscape perspective highlights a likely role for isolation of peripheral populations in initial divergence, and demonstrates that peripheral populations may maintain genetic diversity through outbreeding during the initial stages of speciation. 相似文献
7.
Michael J. Ford 《Evolution; international journal of organic evolution》1998,52(2):539-557
The chinook salmon (Oncorhynchus tschawytscha) is a behaviorally, morphologically, and ecologically variable species distributed over a large geographic range. Although previous genetic surveys have revealed considerable genetic differences among populations with different life history types and from different major river drainages, it is not clear to what degree these genetically distinct populations are connected by low levels of gene flow. The work described in this paper addresses this question by surveying DNA restriction site variation at six nuclear genes from nine populations encompassing most of the species's North American range, and then attempting to fit the patterns of variation observed at these genes to five different evolutionary models using computer simulations of the coalescent process. Two commonly used constant population size models, one hypothesizing no migration among populations and one hypothesizing equal rates of migration among populations, were found to be statistically inconsistent with the observed patterns of variation. The other three models, which involved either recent divergence among populations coupled with large changes in populations size, unequal migration rates among populations, or selection, were all found to be consistent with the observed patterns of variation. Assuming selective neutrality, these results suggest that either the populations have all descended from a common ancestral population within the last ~50,000 years and have all suffered large declines in effective population size since that time, or that they have a more ancient divergence time but are connected by low levels of gene flow. These conclusions rest on the assumption of selective neutrality. With the methods employed, it was not possible to simultaneously test hypotheses of both selective neutrality and population structure. 相似文献
8.
Instances of hybridization between mammalian taxa in the wild are rarely documented. To test for introgression between sibling species of horseshoe bat (Rhinolophus yunanensis and R. pearsoni) and two subspecies of the latter (R. p. pearsoni and R. p. chinensis), we sequenced two mtDNA and two ncDNA markers in individuals sampled from multiple localities within their overlapping ranges. The interspecific mtDNA gene tree corresponded to the expected taxonomic divisions, and coalescent‐based analyses suggested divergence occurred around 4 MYA. However, these relationships strongly conflicted with those recovered from two independent nuclear gene trees, in which R. yunanensis clustered with R. p. pearsoni to the exclusion of R. p. chinensis. This geographically widespread discordance is best explained by large‐scale historical introgression of ncDNA from R. yunanensis to R. pearsoni by male‐mediated exchange in mixed species colonies during Pleistocene glacial periods, when ranges may have contracted and overlapped more than at present. Further species tree–gene tree conflicts were detected between R. p. pearsoni and R. p. chinensis, also indicating past and/or current introgression in their overlapping regions. However, here the patterns point to asymmetric mtDNA introgression without ncDNA introgression. Analyses of coalescence times indicate this exchange has occurred subsequent to the divergence of these subspecies from their common ancestor. Our work highlights the importance of using multiple data sets for reconstructing phylogeographic histories and resolving taxonomic relationships. 相似文献
9.
Riginos C Hickerson MJ Henzler CM Cunningham CW 《Evolution; international journal of organic evolution》2004,58(11):2438-2451
Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance. 相似文献
10.
Pollak E 《Mathematical biosciences》2007,205(2):315-324
Consider a large random mating monoecious diploid population that has N individuals in each generation. Let us assume that at time 0 a random sample of ninfinity. It is then possible to obtain a generalization of coalescent theory for haploid populations if the distribution of G1 has a finite second moment and E[G(1)(3)]/N-->0 as N-->infinity. 相似文献
11.
Data analysis in phylogeographic investigations is typically conducted in either a qualitative manner, or alternatively via the testing of null hypotheses. The former, where inferences about population processes are derived from geographical patterns of genetic variation, may be subject to confirmation bias and prone to overinterpretation. Testing the predictions of null hypotheses is arguably less prone to bias than qualitative approaches, but only if the tested hypotheses are biologically meaningful. As it is difficult to know a priori if this is the case, there is the general need for additional methodological approaches in phylogeographic research. Here, we explore an alternative method for analysing phylogeographic data that utilizes information theory to quantify the probability of multiple hypotheses given the data. We accomplish this by augmenting the model‐selection procedure implemented in ima with calculations of Akaike Information Criterion scores and model probabilities. We generate a ranking of 17 models each representing a set of historical evolutionary processes that may have contributed to the evolution of Plethodon idahoensis, and then quantify the relative strength of support for each hypothesis given the data using metrics borrowed from information theory. Our results suggest that two models have high probability given the data. Each of these models includes population divergence and estimates of ancestral θ that differ from estimates of descendent θ, inferences consistent with prior work in this system. However, the models disagree in that one includes migration as a parameter and one does not, suggesting that there are two regions of parameter space that produce model likelihoods that are similar in magnitude given our data. Results of a simulation study suggest that when data are simulated with migration, most of the optimal models include migration as a parameter, and further that when all of the shared polymorphism results from incomplete lineage sorting, most of the optimal models do not. The results could also indicate a lack of precision, which may be a product of the amount of data that we have collected. In any case, the information‐theoretic metrics that we have applied to the analysis of our data are statistically rigorous, as are hypothesis‐testing approaches, but move beyond the ‘reject/fail to reject’ dichotomy of conventional hypothesis testing in a manner that provides considerably more flexibility to researchers. 相似文献
12.
13.
14.
The role of hybridization in animal speciation is controversial and recent research has challenged the long-standing criterion of complete reproductive isolation to attain species status. The speciation-with-gene-flow model posits that the genome is semi-permeable and hybridization may be a phase in the process of divergence. Here, we apply these concepts to a previously identified zone of mtDNA introgression between the two strongly morphologically differentiated subspecies of red-tailed chipmunk ( Tamias ruficaudus ) in the US Inland Northwest. Using multilocus genotype data from the southern, older contact zone, we demonstrate that neutral gene flow is unusually low between the subspecies across the Lochsa River. This is geographically congruent with the discontinuity in bacular morphology, indicating that the cline of mitochondrial DNA (mtDNA) haplotypes is displaced. Furthermore, we elucidate the evolutionary forces responsible by testing hypotheses of lineage sorting and hybridization. We determined that introgressive hybridization is the cause of mtDNA/morphology incongruence because there are non-zero levels of migration and gene flow. Although our estimate of the age of the hybrid zone has wide credibility intervals, the hybridization events occurred in the Late Pleistocene and the divergence occurred in the Middle Pleistocene. Finally, we assessed substructure within and adjacent to the hybrid zone and found that the hybrid zone constitutes a set of populations that are genetically differentiated from parental sets of populations; therefore, hybridization in this system is not likely an evolutionary sink, but has generated novel combinations of genotypes. 相似文献
15.
Luca Cornetti Francesco Belluardo Samuele Ghielmi Giovanni Giovine Gentile F. Ficetola Giorgio Bertorelle Heidi C. Hauffe 《Biological journal of the Linnean Society. Linnean Society of London》2015,114(3):566-573
Contact zones between two evolutionary lineages are often useful for understanding the process of speciation because the observed genetic pattern reflects the history of differentiation. The Eurasian lacertid lizard Zootoca vivipara is a potentially interesting model for studying the role of reproductive mode in the speciation of squamate reptiles because it has both oviparous (Zootoca vivipara carniolica) and viviparous (Zootoca vivipara vivipara) populations that have recently been shown to be genetically distinct. We studied a newly‐discovered syntopic area of these two Zootoca subspecies in the central Italian Alps using genetic markers to investigate the level of introgression between them. Patterns of genetic differentiation in a fragment of the mitochondrial DNA cytb gene and a set of nuclear microsatellites show that the speciation process is complete in this area, with no evidence of recent introgression. Phylogenetic and genotypic divergence suggests that the two subspecies have experienced long independent evolutionary histories, during which genetic and phenotypic differences evolved. The possible roles of biogeography, reproductive mode, and cytogenetic differentiation in this speciation process are discussed. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 566–573. 相似文献
16.
Richard C. Harrington Edgar Benavides Thomas J. Near 《Evolution; international journal of organic evolution》2013,67(2):388-402
Introgressive hybridization and incomplete lineage sorting complicate the inference of phylogeny, and available species‐tree methods do not simultaneously account for these processes. Both hybridization and ancestral polymorphism have been invoked to explain divergent phylogenies inferred from different datasets for Stigmacerca, a clade of 11 North American darter species. Species of Stigmacerca are characterized by a mating system involving parental care with males guarding nesting territories and fertilized eggs. Males of four species of Stigmacerca develop egg‐mimic nuptial structures on their second dorsal fins during the breeding season. Previous phylogenies suggest contrasting scenarios for the evolution of this nuptial trait. Using a combination of coalescent‐based methods, we analyzed a dataset comprising a mitochondrial gene and 15 nuclear loci to estimate relationships and simultaneously test for introgressive hybridization. Our analyses identified several instances of interspecific gene flow involving both cytoplamsmic haplotypes and nuclear alleles. The new phylogeny was used to infer a single origin and recent loss of egg‐mimic structures in Stigmacerca and led to the discovery of a phylogenetically distinct species. Our results highlight the limited strategies available to account for introgressive hybridization in the inference of species relationships and the likely effects of this process on reconstructing trait evolution. 相似文献
17.
Rosenberg NA 《Evolution; international journal of organic evolution》2007,61(2):317-323
The observation of monophyly for a specified set of genealogical lineages is often used to place the lineages into a distinctive taxonomic entity. However, it is sometimes possible that monophyly of the lineages can occur by chance as an outcome of the random branching of lineages within a single taxon. Thus, especially for small samples, an observation of monophyly for a set of lineages--even if strongly supported statistically--does not necessarily indicate that the lineages are from a distinctive group. Here I develop a test of the null hypothesis that monophyly is a chance outcome of random branching. I also compute the sample size required so that the probability of chance occurrence of monophyly of a specified set of lineages lies below a prescribed tolerance. Under the null model of random branching, the probability that monophyly of the lineages in an index group occurs by chance is substantial if the sample is highly asymmetric, that is, if only a few of the sampled lineages are from the index group, or if only a few lineages are external to the group. If sample sizes are similar inside and outside the group of interest, however, chance occurrence of monophyly can be rejected at stringent significance levels (P < 10(-5)) even for quite small samples (approximately 20 total lineages). For a fixed total sample size, rejection of the null hypothesis of random branching in a single taxon occurs at the most stringent level if samples of nearly equal size inside and outside the index group--with a slightly greater size within the index group--are used. Similar results apply, with smaller sample sizes needed, when reciprocal monophyly of two groups, rather than monophyly of a single group, is of interest. The results suggest minimal sample sizes required for inferences to be made about taxonomic distinctiveness from observations of monophyly. 相似文献
18.
The broad distribution of the Sceloporus magister species group (squamata: phrynosomatidae) throughout western North America provides an appropriate model for testing biogeographical hypotheses explaining the timing and origins of diversity across mainland deserts and the Baja California Peninsula. We inferred concordant phylogenetic trees describing the higher-level relationships within the magister group using 1.6 kb of mitochondrial DNA (mtDNA) and 1.7 kb of nuclear DNA data. These data provide strong support for the parallel divergence of lineages endemic to the Baja California Peninsula (S. zosteromus and the orcutti complex) in the form of two sequential divergence events at the base of the magister group phylogeny. A relaxed phylogenetic analysis of the mtDNA data using one fossil and one biogeographical constraint provides a chronology of these divergence events and evidence that further diversification within the Baja California clades occurred simultaneously, although patterns of geographical variation and speciation between clades differ. We resolved four major phylogeographical clades within S. magister that (i) provide a novel phylogenetic placement of the Chihuahuan Desert populations sister to the Mojave Desert; (ii) illustrate a mixed history for the Colorado Plateau that includes Mojave and Sonoran Desert components; and (iii) identify an area of overlap between the Mojave and Sonoran Desert clades near Yuma, Arizona. Estimates of bidirectional migration rates among populations of S. magister using four nuclear loci support strong asymmetries in gene flow among the major mtDNA clades. Based on the nonexclusivity of mtDNA haplotypes, nuclear gene flow among populations and wide zones of phenotypic intergradation, S. magister appears to represent a single geographically variable and widespread species. 相似文献
19.
Speciation involves the evolution of traits and genetic differences that contribute to reproductive isolation and the cessation of gene flow, and studying closely related species and divergent populations gives insight into how these phenomena proceed. Here, we document patterns of gene flow within and between two members of a rapid Neotropical species radiation, Costus pulverulentus and Costus scaber (Costaceae). These species co‐occur in the tropical rainforest and share pollinators, but are reproductively isolated by a series of prezygotic barriers, some of which show evidence of reinforcement at sympatric sites. Here, we genotype microsatellite markers in plants from eight sites that span the geographical range of both species, including four sympatric sites. We also genotype putative hybrids found at two sympatric sites. We find high levels of genetic isolation among populations within each species and low but detectable levels of introgression between species at sympatric sites. Putative hybrids identified by morphology are consistent with F1 or more advanced hybrids. Our results highlight the effectiveness of prezygotic isolating mechanisms at maintaining species boundaries in young radiations and provide empirical data on levels of gene flow consistent with reinforcement. 相似文献
20.