首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Mutations in more than 10 genes are reported to cause familial amyotrophic lateral sclerosis (ALS). Among these genes, optineurin (OPTN) is virtually the only gene that is considered to cause classical ALS by a loss‐of‐function mutation. Wild‐type optineurin (OPTNWT) suppresses nuclear factor‐kappa B (NF‐κB) activity, but the ALS‐causing mutant OPTN is unable to suppress NF‐κB activity. Therefore, we knocked down OPTN in neuronal cells and examined the resulting NF‐κB activity and phenotype. First, we confirmed the loss of the endogenous OPTN expression after siRNA treatment and found that NF‐κB activity was increased in OPTN‐knockdown cells. Next, we found that OPTN knockdown caused neuronal cell death. Then, overexpression of OPTNWT or OPTNE50K with intact NF‐κB‐suppressive activity, but not overexpression of ALS‐related OPTN mutants, suppressed the neuronal death induced by OPTN knockdown. This neuronal cell death was inhibited by withaferin A, which selectively inhibits NF‐κB activation. Lastly, involvement of the mitochondrial proapoptotic pathway was suggested for neuronal death induced by OPTN knockdown. Taken together, these results indicate that inappropriate NF‐κB activation is the pathogenic mechanism underlying OPTN mutation‐related ALS.

  相似文献   


6.
7.
Environmental factors have been implicated in the pathogenesis of neurodegenerative diseases. Maneb (MB) and mancozeb (MZ) have been extensively used as pesticides. Exposure to MB lowers the threshold for dopaminergic damage triggered by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine. MB and MZ potentiate 1‐methyl‐4‐phenylpyridium (MPP+)‐induced cytotoxicity in rat pheochromocytoma (PC12) cells partially via nuclear factor kappa B (NF‐κB) activation. RTP801 dramatically increased by oxidative stresses and DNA damage is the possible mechanism of neurotoxins‐induced cell death in many studies. This study demonstrated that MB and MZ induced DNA damage as seen in comet assay. The expressions of RTP801 protein and mRNA were elevated after MB and MZ exposures. By knocking down RTP801 using shRNA, we demonstrated that NF‐κB activation by MB and MZ was regulated by RTP801 and cell death triggered by MB and MZ was associated with RTP801 elevation. This revealed that the toxic mechanisms of dithiocarbamates are via the cross talk between RTP801 and NF‐κB.  相似文献   

8.
9.
10.
11.
The osteoarthritis (OA) progression is now considered to be related to inflammation. Anemonin (ANE) is a small natural molecule extracted from various kinds of Chinese traditional herbs and has been shown to inhibiting inflammation response. In this study, we examined whether ANE could attenuate the progression of OA via suppression of IL‐1β/NF‐κB pathway activation. Destabilization of the medial meniscus (DMM) was performed in 10‐week‐old male C57BL/6J mice. ANE was then intra‐articularly injected into joint capsule for 8 and 12 weeks. Human articular chondrocytes and cartilage explants challenged with interleukin‐1β (IL‐1β) were treated with ANE. We found that ANE delayed articular cartilage degeneration in vitro and in vivo. In particular, proteoglycan loss and chondrocyte hypertrophy were significantly decreased in ANE ‐treated mice compared with vehicle‐treated mice. ANE decreased the expressions of matrix metalloproteinase‐13 (MMP13), A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), collagen X (Col X) while increasing Aggrecan level in murine with DMM surgery. ANE treatment also attenuated proteoglycan loss in human cartilage explants treated with IL‐1β ex vivo. ANE is a potent protective molecule for OA; it delays OA progression by suppressing ECM loss and chondrocyte hypertrophy partially by suppressing IL‐1β/NF‐κB pathway activation.  相似文献   

12.
The ubiquitin‐conjugation system regulates a vast range of biological phenomena by affecting protein function mostly through polyubiquitin conjugation. The type of polyubiquitin chain that is generated seems to determine how conjugated proteins are regulated, as they are recognized specifically by proteins that contain chain‐specific ubiquitin‐binding motifs. An enzyme complex that catalyses the formation of newly described linear polyubiquitin chains—known as linear ubiquitin chain‐assembly complex (LUBAC)—has recently been characterized, as has a particular ubiquitin‐binding domain that specifically recognizes linear chains. Both have been shown to have crucial roles in the canonical nuclear factor‐κB (NF‐κB)‐activation pathway. The ubiquitin system is intimately involved in regulating the NF‐κB pathway, and the regulatory roles of K63‐linked chains have been studied extensively. However, the role of linear chains in this process is only now emerging. This article discusses the possible mechanisms underlying linear polyubiquitin‐mediated activation of NF‐κB, and the different roles that K63‐linked and linear chains have in NF‐κB activation. Future directions for linear polyubiquitin research are also discussed.  相似文献   

13.
14.
15.
16.
17.
Sulforaphene (SFE), a naturally occurring isothiocyanate found in cruciferous vegetables, has attracted increasing attention for its anti‐cancer effect in many cancers, including hepatocellular carcinoma (HCC). However, the precise role of SFE in the radiosensitivity of HCC is still unclear. Here, cell proliferation and apoptosis were detected by MTT and flow cytometry assay, respectively. The activity of NF‐κB was further evaluated by ELISA. We also observed the effect of SFE and/or radiation on tumor growth. The results showed that SFE inhibited cell proliferation and induced apoptosis in HCC cells. Radiation increased NF‐kB activity, while PDTC, a NF‐kB inhibitor, enhanced radiation‐induced cell death. SFE inhibited NF‐kB activity and the downstream gene expressions of the NF‐kB pathway in HCC cells. Moreover, SFE enhanced the inhibitory effect of radiation on tumor growth both in vitro and in vivo. This study indicated that SFE sensitized the radiosensitivity of HCC by blocking the NF‐kB pathway.  相似文献   

18.
Pseudolaric acid B (PAB) is a major bioactive component of the medicinal plant Pseudolarix kaempferi. Traditional medicine practitioners in Asia have been using the roots of this plant to treat inflammatory and microbial skin diseases for centuries. In the current study, in vitro immunosuppressive effect of PAB and the underlying mechanisms have been investigated. The results showed that PAB dose‐dependently suppressed human T lymphocyte proliferation, IL‐2 production and CD25 expression induced by co‐stimulation of PMA plus ionomycin or of anti‐OKT‐3 plus anti‐CD28. Mechanistic studies showed that PAB significantly inhibited nuclear translocation of NF‐κB p65 and phosphorylation and degradation of IκB‐α evoked by co‐stimulation of PMA plus ionomycin. PAB could also suppress the phosphorylation of p38 in the MAPKs pathway. Based on these evidences, we conclude that PAB suppressed T lymphocyte activation through inhibition of NF‐κB and p38 signaling pathways; this would make PAB a strong candidate for further study as an anti‐inflammatory agent. J. Cell. Biochem. 108: 87–95, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
As a malignant tumour of the central nervous system, glioma exhibits high incidence and poor prognosis. Although TNIP1 and the TNF‐α/NF‐κB axis play key roles in immune diseases and inflammatory responses, their relationship and role in glioma remain unknown. Here, we revealed high levels of TNIP1 and TNF‐α/NF‐κB in glioma tissue. Glioma cell proliferation was activated with TNF‐α treatment and showed extreme sensitivity to the TNF receptor antagonist. Furthermore, loss of TNIP1 disbanded the A20 complex responsible for IκB degradation and NF‐κB nucleus translocation, and consequently erased TNFα‐induced glioma cell proliferation. Thus, our investigation uncovered a vital function of the TNIP1‐mediated TNF‐α/NF‐κB axis in glioma cell proliferation and provides novel insight into glioma pathology and diagnosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号