首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predicting the responses of populations in changing environments is an important task for ecologists. Understanding the population dynamics of high-latitude breeding species is critical given the particularly rapid environmental changes that occur in these regions. Using long-term mark–resighting data acquired over 53-years in Pointe Géologie, Terre Adélie, Antarctica, we estimated age-specific demographic parameters and evaluated the effect of the environment on survival of a poorly known species, the cape petrel Daption capense. We then modeled the dynamics of this population using a life-history model and performed prospective and retrospective analyses to estimate the sensitivity of the population growth rate to demographic parameters, and to quantify their relative contribution. Survival of cape petrel increased with age, being 0.610 (±0.193) for juveniles, 0.739 (±0.158) for individuals from 2 to 4, and 0.920 (±0.031) for older individuals. Minimum age at first reproduction was 3 years old, the age at which all birds were recruited was 14 years, and mean age at first reproduction was 9.05 (±2.06) years. Adult survival increased over time and was positively correlated with the southern annular mode (SAM). The stochastic population growth rate was estimated at 1.019, and adult survival over age 5 made the largest contribution to variance of the population growth rate. Sensitivity analyses revealed that population regulation was mainly driven by the SAM. Our results suggest that despite the decrease in breeding success, the population of cape petrels at Pointe Géologie increased due to the increase in immature and adult survival.  相似文献   

2.
Linking dispersal to population growth remains a challenging task and is a major knowledge gap, for example, for conservation management. We studied relative roles of different demographic rates behind population growth in Siberian flying squirrels in two nest‐box breeding populations in western Finland. Adults and offspring were captured and individually identifiable. We constructed an integrated population model, which estimated all relevant annual demographic rates (birth, local [apparent] survival, and immigration) as well as population growth rates. One population (studied 2002–2014) fluctuated around a steady‐state equilibrium, whereas the other (studied 1995–2014) showed a numerical decline. Immigration was the demographic rate which showed clear correlations to annual population growth rates in both populations. Population growth rate was density dependent in both populations. None of the demographic rates nor the population growth rate correlated across the two study populations, despite their proximity suggesting that factors regulating the dynamics are determined locally. We conclude that flying squirrels may persist in a network of uncoupled subpopulations, where movement between subpopulations is of critical importance. Our study supports the view that dispersal has the key role in population survival of a small forest rodent.  相似文献   

3.
1. Quantifying the pattern of temporal and spatial variation in demography, and identifying the factors that cause this variation, are essential steps towards understanding the structure and dynamics of any population. 2. One critical but understudied demographic rate is pre-breeding survival. We used long-term colour-ringing data to quantify temporal (among-year) and spatial (among-nest site) variation in pre-breeding survival in red-billed choughs (Pyrrhocorax pyrrhocorax) inhabiting Islay, Scotland, and identified environmental correlates of this variation. 3. Random-effects capture-mark-recapture models demonstrated substantial temporal and spatial process variance in first-year survival; survival from fledging to age 1 year varied markedly among choughs fledged in different years and fledged from different nest sites. Spatial variance exceeded temporal variance across choughs fledged from well-studied nest sites. 4. The best-supported models of temporal variation suggested that first-year survival was higher in years following high tipulid larvae abundance and when weather conditions favoured increased invertebrate productivity and/or availability to foraging choughs. These variables explained up to 80% of estimated temporal process variance. 5. The best-supported models of spatial variation suggested that first-year survival was higher in choughs fledged from nest sites that were further from exposed coasts and closer to flocking areas, and surrounded by better habitat and higher chough density. These variables explained up to 40% of estimated spatial process variance. 6. Importantly, spatio-temporal models indicated interactive effects of weather, tipulid abundance, local habitat and local chough density on first-year survival, suggesting that detrimental effects of poor weather and low tipulid abundance may be reduced in choughs fledged from nest sites surrounded by better foraging habitat and lower chough density. 7. These analyses demonstrate substantial temporal and small-scale spatial variation in pre-breeding survival, a key demographic rate, and indicate that this variation may reflect interactive effects of weather, prey abundance, habitat and geography. These patterns illustrate the value of holistic models of demographic variation, and indicate environmental factors that may limit the growth rate of Islay's protected chough population.  相似文献   

4.
Identifying factors influencing the demographics of threatened species is essential for conservation, but a lack of comprehensive demographic data often impedes the effective conservation of rare and mobile species. We monitored breeding of critically endangered and semi‐nomadic Regent Honeyeaters Anthochaera phrygia (global population c. 100 pairs) over 3 years throughout their range. Overall nest success probability (0.317) was highly spatially variable and considerably lower than previous estimates for this (and many other honeyeater) species, as was productivity of successful nests (mean 1.58 juveniles fledged). Nest surveillance revealed high predation rates by a range of birds and arboreal mammals as the primary cause of nest failure. An estimated 12% of pairs either failed to establish a territory or their nests did not reach the egg stage. We also found a male bias to the adult sex ratio, with an estimated 1.18 males per female. Juvenile survival for the first 2 weeks after fledging was high (86%). Management interventions that aim to increase nest success in areas of low nest survival must be investigated to address an apparent decline in reproductive output and avoid extinction of the Regent Honeyeater. We show that temporal and spatial variation in the breeding success of rare and highly mobile species can be quantified with robust population monitoring using sampling regimens that account for their life histories. Understanding the causes of spatio‐temporal variation in breeding success can enhance conservation outcomes for such species through spatially and temporally targeted recovery actions.  相似文献   

5.
Populations of Afro‐Palearctic migrant birds have shown severe declines in recent decades. To identify the causes of these declines, accurate measures of both demographic rates (seasonal productivity, apparent survival, immigration) and environmental parameters will allow conservation and research actions to be targeted effectively. We used detailed observations of marked breeding birds from a ‘stronghold’ population of whinchats Saxicola rubetra in England (stable against the declining European trend) to reveal both on‐site and external mechanisms that contribute to population change. From field data, a population model was developed based on demographic rates from 2011 to 2014. Observed population trends were compared to the predicted population trends to assess model‐accuracy and the influence of outside factors, such as immigration. The sensitivity of the projected population growth rate to relative change in each demographic rate was also explored. Against expectations of high productivity, we identified low seasonal breeding success due to nocturnal predation and low apparent first‐year survival, which led to a projected population growth rate (λ) of 0.818, indicating a declining trend. However, this trend was not reflected in the census counts, suggesting that high immigration was probably responsible for buffering against this decline. Elasticity analysis indicated λ was most sensitive to changes in adult survival but with covariance between demographic rates accounted for, most temporal variation in λ was due to variation in productivity. Our study demonstrates that high quality breeding habitat can buffer against population decline but high immigration and low productivity will expose even such stronghold populations to potential decline or abandonment if either factor is unsustainable. First‐year survival also appeared low, however this result is potentially confounded by high natal dispersal. First‐year survival and/or dispersal remains a significant knowledge gap that potentially undermines local solutions aimed at counteracting low productivity.  相似文献   

6.
ABSTRACT The lesser prairie-chicken (Tympanuchus pallidicinctus) is currently considered a candidate for protection under the Endangered Species Act. To identify potential limiting factors for lesser prairie-chicken populations, we developed an age-based matrix model of lesser prairie-chicken population dynamics to compare the relative importance of components of reproduction and survival, and determine if various management alternatives stabilize or increase rates of population change. We based our analyses on an intensive 6-year population study from which demographic rates were estimated for each age class in Kansas. We used deterministic models and elasticity values to identify parameters predicted to have the greatest effect on the rate of population change (λ) at 2 study sites. Last, we used life-stage simulation analysis to simulate various management alternatives. Lambda was <1 for both populations (site 1: λ = 0.54, site 2: λ = 0.74). However, we found differences in sensitivity to nest success and chick survival between populations. The results of the simulated management scenarios complemented the lower-level elasticity analysis and indicated the relative importance of female survival during the breeding season compared with winter. If management practices are only capable of targeting a single demographic rate, changes to either nest success or chick survival had the greatest impact on λ at site 1 and 2, respectively. Management that simultaneously manipulated both nest success and chick survival was predicted to have a greater effect on λ than changes in survival of adult females. In practice, our demographic analyses indicate that effective management should be based on habitat conservation measures to increase components of fecundity.  相似文献   

7.
Capsule Apparent survival rates of Yellow Wagtails breeding in abandoned fields in Russia are determined by previous breeding success.

Aims To examine apparent survival and its link to previous breeding success in Yellow Wagtails breeding in abandoned fields in the Vologda region, northern European Russia.

Methods We ringed and measured apparent survival of Yellow Wagtails at two abandoned agricultural sites over eight years (2005–2012). We modelled the impact of age, nest stage, and time of season on daily nest survival rates.

Results Predation was the main cause of nest failure. Nest daily survival rate was highest at the beginning of the breeding season. Overall nest survival probability was 0.40?±?0.02. Adult apparent survival after successful breeding was 0.42?±?0.06 and after unsuccessful breeding this was 0.13?±?0.06.

Conclusion Reproductive success can be regarded as the crucial demographic parameter of the local Yellow Wagtail population in northern European Russia. Apparent survival after successful breeding is significantly higher than after unsuccessful breeding, because unsuccessful breeders probably move to new breeding sites the following year. High adult survival may be particularly important to Yellow Wagtail population dynamics in the study region, because second breeding attempts are apparently unusual.  相似文献   

8.
Habitat availability might be the most important determinant of success for a species reintroduction programme, making investigation of the quality and quantity of habitat needed to produce self‐sustaining populations a research priority for reintroduction ecologists. We used a stochastic model of population dynamics to predict whether attempts to improve existing breeding territories using artificial nest platforms improved the population growth rate and persistence of a reintroduced population of Northern Aplomado Falcons Falco femoralis septentrionalis in South Texas. We further assessed whether the creation of new territories, i.e. conversion of entire areas to suitable habitat and not simply the erection of nest platforms, would lead to a subsequent increase in the nesting population. Our model was able to reproduce several characteristics of the wild population and predicted the number of breeding pairs per year strikingly well (R2 = 0.97). Simulations revealed that the addition of nest platforms improved productivity such that the population would decline to extinction without them but is stable since their installation. Moreover, the model predicted that the increase in productivity due to nest platforms would cause the population to saturate available breeding territories, at which point the population would contain a moderate proportion of non‐territorial birds that could occupy territories if new ones become available. Population size would therefore be proportional to the increase in available territories. Our study demonstrates that artificial nest‐sites can be an effective tool for the management of reintroduced species.  相似文献   

9.
Understanding population dynamics requires spatio‐temporal variation in demography to be measured across appropriate spatial and temporal scales. However, the most appropriate spatial scale(s) may not be obvious, few datasets cover sufficient time periods, and key demographic rates are often incompletely measured. Consequently, it is often assumed that demography will be spatially homogeneous within populations that lack obvious subdivision. Here, we quantify small‐scale spatial and temporal variation in a key demographic rate, reproductive success (RS), within an apparently contiguous population of European starlings. We used hierarchical cluster analysis to define spatial clusters of nest sites at multiple small spatial scales and long‐term data to test the hypothesis that small‐scale spatio‐temporal variation in RS occurred. RS was measured as the number of chicks alive ca. 12 days posthatch either per first brood or per nest site per breeding season (thereby incorporating multiple breeding attempts). First brood RS varied substantially among spatial clusters and years. Furthermore, the pattern of spatial variation was stable across years; some nest clusters consistently produced more chicks than others. Total seasonal RS also varied substantially among spatial clusters and years. However, the magnitude of variation was much larger and the pattern of spatial variation was no longer temporally consistent. Furthermore, the estimated magnitude of spatial variation in RS was greater at smaller spatial scales. We thereby demonstrate substantial spatial, temporal, and spatio‐temporal variation in RS occurring at very small spatial scales. We show that the estimated magnitude of this variation depended on spatial scale and that spatio‐temporal variation would not have been detected if season‐long RS had not been measured. Such small‐scale spatio‐temporal variation should be incorporated into empirical and theoretical treatments of population dynamics.  相似文献   

10.
In 1994, Delta Waterfowl Foundation began trapping mammalian meso-predators in North Dakota during the breeding season in an attempt to increase waterfowl nest success and enhance recruitment into the fall flight and subsequent breeding population. Multiple studies on these sites demonstrated that removing predators results in near doubling of nest success, which previous simulation modeling suggests is the most influential vital rate influencing the population growth rate of mid-continent mallards (Anas platyrhynchos). We present an assessment of the impact of predator removal on mallard production using population models. We conducted this study on 9 township-sized (93.2 km2) sites (4–8 sites annually per vital rate) in northeastern North Dakota from 2006–2008. Trappers removed mammalian meso-predators on 5 sites and the other 4 served as unmanaged reference sites. To estimate recruitment, we used derived estimates and process variance of pair numbers, hen success (nest survival corrected for renesting), initial brood size, pre-fledging survival, and post-fledging survival, along with previously published estimates of breeding propensity and adult female survival rates. Trapped sites had greater hen success (H = 0.69, = 0.03) than reference sites (H = 0.53, = 0.06), but similar indicated breeding pairs, initial brood size, and pre-fledging survival. We estimated that females on trapped sites added 140 more mallards of both sexes to the fall flight than females on reference sites, at an approximate cost of $74.29 per incremental mallard. Additionally, trapping predators provided a marginal increase (0.04) in finite population growth. We found that predator removal targeted at mammalian nest predators did not produce as many incremental mallards as previously thought and may not be a viable strategy for increasing mallard productivity under conditions similar to those observed during this study. We conducted a sensitivity analysis and determined that pre-fledging survival was the most influential factor regulating mallard population growth. Although hen success increased as a result of trapping, duckling survival became a limiting factor. We suggest that waterfowl managers assess multiple vital rates to determine the likelihood that management actions focused on a single parameter, such as nest success, will yield desired population level effects. © 2012 The Wildlife Society.  相似文献   

11.
We studied the nest site selection and distribution pattern at landscape level of the German Osprey population, and demonstrated how to test the predictions of the ideal free distribution theory and its derivatives on such an expanding population. Information about the location and breeding success of each Osprey nest site between 1995 and 2005 was collected through a long-term monitoring programme. Data of land cover types were acquired from the administrations of each federal state and the CORINE Land Cover database. The results showed that Ospreys preferred landscapes with more water bodies and forests. Such sites were also occupied earlier and had higher local population density. However, in the study period of 11 years, there was a gradual shift from forest-dominated landscapes to agricultural land-dominated landscapes. The breeding success increased over time, with no difference in the breeding success between pairs nesting on trees and poles, whereas there was higher breeding success at nest sites surrounded by more agricultural land and less forest. The more efficient foraging in eutrophic lakes in agricultural landscapes was the most likely cause for the higher breeding success. The distribution pattern of the Ospreys did not match the resource allocation, which deviated from the models tested. We suggested that the proximate cues used for nest site selection mismatched site quality due to anthropogenic environmental changes.  相似文献   

12.
Capsule Sex-biased dispersal and an age-dependent effect in survival rate accounted for the pattern of first settlement and reproduction in a newly reintroduced Osprey population.

Aims We estimate the survival of translocated individuals, describe juvenile movements and evaluate the success of first breeding events to document the re-establishment of an Osprey breeding population.

Methods Between 2006 and 2010, 32 fledgling Ospreys were reintroduced via hacking techniques in Maremma Regional Park, Italy. We evaluated the effects of age on survival through multistate capture-mark-recapture analyses. Movements were investigated by radiotracking and using records of resightings.

Results Survival was high for juveniles after the release (0.87), markedly decreased during the first winter (0.26), and improved again in subsequent years (annual apparent survival of 0.69 for immatures and 0.93 for adults). Mean distance covered in initial dispersal was greater for females (246.2?km) than for males (38.7?km).

Conclusion Our results provided information on dispersal and survival rate of reintroduced Ospreys in a Mediterranean area. Despite low apparent survival in the first year, the high survival rates found in immatures and adults suggested favourable conditions for this new population. The study of demographic parameters is important for calibrating management actions aimed at the establishment of a self-sustaining Osprey population.  相似文献   

13.
The Arctic is undergoing rapid and accelerating change in response to global warming, altering biodiversity patterns, and ecosystem function across the region. For Arctic endemic species, our understanding of the consequences of such change remains limited. Spectacled eiders (Somateria fischeri), a large Arctic sea duck, use remote regions in the Bering Sea, Arctic Russia, and Alaska throughout the annual cycle making it difficult to conduct comprehensive surveys or demographic studies. Listed as Threatened under the U.S. Endangered Species Act, understanding the species response to climate change is critical for effective conservation policy and planning. Here, we developed an integrated population model to describe spectacled eider population dynamics using capture–mark–recapture, breeding population survey, nest survey, and environmental data collected between 1992 and 2014. Our intent was to estimate abundance, population growth, and demographic rates, and quantify how changes in the environment influenced population dynamics. Abundance of spectacled eiders breeding in western Alaska has increased since listing in 1993 and responded more strongly to annual variation in first‐year survival than adult survival or productivity. We found both adult survival and nest success were highest in years following intermediate sea ice conditions during the wintering period, and both demographic rates declined when sea ice conditions were above or below average. In recent years, sea ice extent has reached new record lows and has remained below average throughout the winter for multiple years in a row. Sea ice persistence is expected to further decline in the Bering Sea. Our results indicate spectacled eiders may be vulnerable to climate change and the increasingly variable sea ice conditions throughout their wintering range with potentially deleterious effects on population dynamics. Importantly, we identified that different demographic rates responded similarly to changes in sea ice conditions, emphasizing the need for integrated analyses to understand population dynamics.  相似文献   

14.
Nest survival is critical to breeding in birds and plays an important role in life‐history evolution and population dynamics. Studies evaluating the proximate factors involved in explaining nest survival and the resulting temporal patterns are biased in favor of temperate regions. Yet, such studies are especially pertinent to the tropics, where nest predation rates are typically high and environmental conditions often allow for year‐round breeding. To tease apart the effects of calendar month and year, population‐level breeding activity and environmental conditions, we studied nest survival over a 64‐month period in equatorial, year‐round breeding red‐capped larks Calandrella cinerea in Kenya. We show that daily nest survival rates varied with time, but not in a predictable seasonal fashion among months or consistently among years. We found negative influences of flying invertebrate biomass and rain on nest survival and higher survival of nests when nests were more abundant, which suggests that nest predation resulted from incidental predation. Although an increase in nest predation is often attributed to an increase in nest predators, we suggest that in our study, it may be caused by altered predator activity resulting from increased activity of the primary prey, invertebrates, rather than activity of the red‐capped larks. Our results emphasize the need to conduct more studies in Afro‐tropical regions because proximate mechanisms explaining nest predation can be different in the unpredictable and highly variable environments of the tropics compared with the relatively predictable seasonal changes found in temperate regions. Such studies will aid in better understanding of the environmental influences on life‐history variation and population dynamics in birds.  相似文献   

15.
Weather extremes are one important element of ongoing climate change, but their impacts are poorly understood because they are, by definition, rare events. If the frequency and severity of extreme weather events increase, there is an urgent need to understand and predict the ecological consequences of such events. In this study, we aimed to quantify the effects of snow storms on nest survival in Antarctic petrels and assess whether snow storms are an important driver of annual breeding success and population growth rate. We used detailed data on daily individual nest survival in a year with frequent and heavy snow storms, and long term data on petrel productivity (i.e., number of chicks produced) at the colony level. Our results indicated that snow storms are an important determinant of nest survival and overall productivity. Snow storm events explained 30% of the daily nest survival within the 2011/2012 season and nearly 30% of the interannual variation in colony productivity in period 1985–2014. Snow storms are a key driver of Antarctic petrel breeding success, and potentially population dynamics. We also found state‐dependent effects of snow storms and chicks in poor condition were more likely to die during a snow storm than chicks in good condition. This stresses the importance of considering interactions between individual heterogeneity and extreme weather events to understand both individual and population responses to climate change.  相似文献   

16.
1. Understanding the pattern and magnitude of spatial variation in demography and population growth rate (lambda) is key to understanding the structure and dynamics of natural populations. However, such spatial variation is challenging to quantify. We use>20 years of individual life-history data to quantify small- and large-scale spatial variation in demography and lambda within a single population of red-billed choughs Pyrrhocorax pyrrhocorax on Islay, Scotland. Critically, we demonstrate a major importance of an individual's natal rather than current location in driving observed spatial variation. 2. Breeding success (the number of offspring fledged per breeding attempt) varied among individual chough nest sites but did not vary on a larger spatial scale across Islay. 3. The proportion of fledglings observed to survive to recruiting age varied markedly among individual nest sites and also varied more widely across Islay. Spatial capture-mark-recapture models defined two discrete geographical regions where fledgling survival differed significantly: choughs fledged in region 'BGE' were more likely to survive than choughs fledged in region 'CNSW' as both subadults and adults. 4. The asymptotic lambda attributable to breeding attempts in region BGE exceeded unity, and exceeded that attributable to breeding attempts in region CNSW. Relatively productive and unproductive regions therefore exist within this population. 5. Spatial variation in adult survival was better explained by an individual's natal region than the region where that individual settled to breed. Spatial variation in lambda would consequently have remained undetected had survival been measured across resident breeders rather than across individuals fledged in each region. Furthermore, breeding success was a weak predictor of a nest site's estimated productivity of recruits. 6. We therefore describe marked spatial variation in demography and lambda within a single population of a territorial vertebrate, mediated partly by long-term links between an individual's natal location and its subsequent life-history. Life-long monitoring of individuals of known origin may therefore be necessary to identify accurately subpopulations of intrinsically high and low lambda.  相似文献   

17.
ABSTRACT To conserve threatened species, managers require predictions about the effects of natural and anthropogenic factors on population growth that in turn require accurate estimates of survival, birth, and dispersal rates, and their correlation with natural and anthropogenic factors. For Piping Plovers (Charadrius melodus), fledging rate is often more amenable to management than adult survival, and population models can be used to estimate the productivity (young produced per breeding female) necessary to maintain or increase populations for given levels of survival. We estimated true survival and site fidelity of adult and subadult (from fledging to second year) Piping Plovers breeding in Saskatchewan using mark‐resight data from 2002 to 2009. By estimating true survival rather than apparent survival (which is confounded with permanent emigration), we were able to provide more accurate projections of population trends. Average adult and subadult survival rates during our study were 0.80 and 0.57, respectively. Adult survival declined over time, possibly due in part to the loss of one breeding site to flooding. Average adult and subadult site fidelity were 0.86 and 0.46, respectively. Adult site fidelity declined during our study at two study sites, most strongly at the flooded site. Male and female Piping Plovers had similar survival rates, but males had greater site fidelity than females in some years. Based on our survival estimates, productivity needed for a stationary population was 0.75, a benchmark used for plover management on the Atlantic Coast, but not previously estimated for Prairie Canada. In stochastic simulations incorporating literature‐based variation in survival rates, productivity needed for a stationary population increased to 0.86, still lower than that previously estimated for western populations. Mean productivity for our study sites ranged from 0.87 to 0.96 fledged young per pair. Our results suggest that fledging rates of Piping Plovers in Saskatchewan were sufficient to ensure a stationary or increasing population during our study period. However, large‐scale habitat changes such as drought or anthropogenic flooding may lead to dispersal of breeding adults and possibly mortality that will increase the fledging rate needed for a stationary population.  相似文献   

18.
Understanding the mechanisms that shape animal population dynamics is of fundamental interest in ecology, evolution and conservation biology. Food supply is an important limiting factor in most animal populations and may have demographic consequences. Optimal foraging theory predicts greater consumption of preferred prey and less diet diversity when food is abundant, which may benefit key fitness parameters such as productivity and survival. Nevertheless, the correspondence between individual resource use and demographic processes in populations of avian predators inhabiting large geographic areas remains largely unexplored, particularly in complex ecosystems such as those of the Mediterranean basin. Based on a long‐term monitoring program of the diet and demography of Bonelli's eagle Aquila fasciata in western Europe, here we test the hypothesis that a predator's diet is correlated to its breeding productivity and survival at both the territorial and population levels, and ultimately to its population growth rate. At the territorial level, we found that productivity increased with greater consumption of European rabbits Oryctolagus cuniculus, the Bonelli's eagle's preferred prey, and pigeons, an important alternative prey for this predator. The survival of territorial pairs was negatively affected by higher diet diversity, which probably reflected the inability to find sufficient high quality prey. Diet effects at the population level were similar but more noticeable than at the territorial level, i.e. a greater consumption of rabbits, together with lesser consumption of small‐to‐medium avian species (‘other birds’; non‐preferred prey), increased productivity, while greater diet diversity and lower consumption of rabbits was associated with reduced survival and population growth rate. Overall, our study illustrates how the diet of a predator species can be closely related to key individual vital rates, which, in turn, leave a measurable fingerprint on population dynamics within and among populations across large spatial scales.  相似文献   

19.
Knowledge of the rate, distance and direction of dispersal within and among breeding areas is required to understand and predict demographic and genetic connectivity and resulting population and evolutionary dynamics. However dispersal rates, and the full distributions of dispersal distances and directions, are rarely comprehensively estimated across all spatial scales relevant to wild populations. We used re‐sightings of European Shags Phalacrocorax aristotelis colour‐ringed as chicks on the Isle of May (IoM), UK, to quantify rates, distances and directions of dispersal from natal to subsequent breeding sites both within IoM (within‐colony dispersal) and across 27 other breeding colonies covering 1045 km of coastline (among‐colony dispersal). Additionally, we used non‐breeding season surveys covering 895 km of coastline to estimate breeding season detection probability and hence potential bias in estimated dispersal parameters. Within IoM, 99.6% of individuals dispersed between their natal and observed breeding nest‐site. The distribution of within‐colony dispersal distances was right‐skewed; mean distance was shorter than expected given random settlement within IoM, yet some individuals dispersed long distances within the colony. The distribution of within‐colony dispersal directions was non‐uniform but did not differ from expectation given the spatial arrangement of nest‐sites. However, 10% of all 460 colour‐ringed adults that were located breeding had dispersed to a different colony. The maximum observed dispersal distance (170 km) was much smaller than the maximum distance surveyed (690 km). The distribution of among‐colony dispersal distances was again right‐skewed. Among‐colony dispersal was directional, and differed from random expectation and from the distribution of within‐colony dispersal directions. Non‐breeding season surveys suggested that the probability of detecting a colour‐ringed adult at its breeding location was high in the northeastern UK (98%). Estimated dispersal rates and distributions were therefore robust to incomplete detection. Overall, these data demonstrate skewed and directionally divergent dispersal distributions across small (within‐colony) and large (among‐colony) scales, indicating that dispersal could create genetic and demographic connectivity within the study area.  相似文献   

20.
Identifying factors influencing nest survival among sympatric species is important for understanding and managing sources of variation in population dynamics of individual species. Three species of loons nest sympatrically in northern Alaska and differ in body size, life history characteristics, and population trends. We tested the effects of competition, nest site selection, and water level variations on nest survival of Pacific Gavia pacifica, yellow‐billed G. adamsii, and red‐throated loons G. stellata on the Arctic Coastal Plain in Alaska. Although overall nest survival rates did not differ between species, the factors influencing nest survival varied. Nest site selection influenced nest survival for Pacific and yellow‐billed loons, with both species having high nest survival when nesting on islands and peninsulas, likely due to a reduction in access by terrestrial predators. However, on mainland shorelines, Pacific loons had lower nest survival than yellow‐billed loons, and used a higher proportion of vegetation mats for nest sites suggesting that their smaller body size makes them less adept at nest defense. Nest site selection did not influence nest survival of red‐throated loons corresponding to our result of no nest site preferences by this species. Initiation date had a strong influence on nest survival for Pacific and yellow‐billed loons with nests laid earlier having higher survival. Pacific and yellow‐billed loon nests were susceptible to flooding due to precipitation, which contrasted with red‐throated loons that nest on smaller lakes with lower water level variations. Competition did not affect nest survival for any of the species likely due to most territorial encounters occurring prior to incubation. The only influence we found on red‐throated loon nest survival was differences among years. Our results indicate that loons chose nest sites based on predation risk and that factors influencing breeding success of closely related species may differ under similar breeding conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号