首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, sociobiology has been extended to microorganisms. Viewed through this lens, the microbial world is replete with cooperative behaviors. However, little attention has been paid to alternate hypotheses, making many studies self‐confirming. Somewhat apart is a recent analysis of pyoverdin production—a paradigmatic public good and social trait—by Pseudomonas, which has revealed discord between predictions arising from sociobiology and the biology of microbes. This led the authors, Zhang and Rainey (Z&R), to question the generality of the conclusion that pyoverdin is a social trait, and to question the fit between the sociobiology framework and microbiology. This has unsettled Kümmerli and Ross‐Gillespie (K&R), who in a recent “Technical Comment” assert that arguments presented by Z&R are flawed, their experiments technically mistaken, and their understanding of social evolution theory naive. We demonstrate these claims to be without substance and show the conclusions of K&R to be based on a lack of understanding of redox chemistry and on misinterpretation of data. We also point to evidence of cherry‐picking and raise the possibility of confirmation bias. Finally, we emphasize that the sociobiology framework applied to microbes is a hypothesis that requires rigorous and careful appraisal.  相似文献   

2.
Repression of competition (RC) within social groups has been suggested as a key mechanism driving the evolution of cooperation, because it aligns the individual’s proximate interest with the interest of the group. Despite its enormous potential for explaining cooperation across all levels of biological organization, ranging from fair meiosis, to policing in insect societies, to sanctions in mutualistic interactions between species, there has been no direct experimental test of whether RC favours the spread of cooperators in a well‐mixed population with cheats. To address this, we carried out an experimental evolution study to test the effect of RC upon a cooperative trait – the production of iron‐scavenging siderophore molecules – in the bacterium Pseudomonas aeruginosa. We found that cooperation was favoured when competition between siderophore producers and nonsiderophore‐producing cheats was repressed, but not in a treatment where competition between the two strains was permitted. We further show that RC altered the cost of cooperation, but did not affect the relatedness among interacting individuals. This confirms that RC per se, as opposed to increased relatedness, has driven the observed increase in bacterial cooperation.  相似文献   

3.
There is growing awareness of the importance of cooperative behaviours in microbial communities. Empirical support for this insight comes from experiments using mutant strains, termed ‘cheats’, which exploit the cooperative behaviour of wild‐type strains. However, little detailed work has gone into characterising the competitive dynamics of cooperative and cheating strains. We test three specific predictions about the fitness consequences of cheating to different extents by examining the production of the iron‐scavenging siderophore molecule, pyoverdin, in the bacterium Pseudomonas aeruginosa. We create a collection of mutants that differ in the amount of pyoverdin that they produce (from 1% to 96% of the production of paired wild types) and demonstrate that these production levels correlate with both gene activity and the ability to bind iron. Across these mutants, we found that (1) when grown in a mixed culture with a cooperative wild‐type strain, the relative fitness of a mutant is negatively correlated with the amount of pyoverdin that it produces; (2) the absolute and relative fitness of the wild‐type strain in the mixed culture is positively correlated with the amount of pyoverdin that the mutant produces; and (3) when grown in a monoculture, the absolute fitness of the mutant is positively correlated with the amount of pyoverdin that it produces. Overall, we demonstrate that cooperative pyoverdin production is exploitable and illustrate how variation in a social behaviour determines fitness differently, depending on the social environment.  相似文献   

4.
Microbial cells rely on cooperative behaviours that can breakdown as a result of exploitation by cheats. Recent work on cheating in microbes, however, has produced examples of populations benefiting from the presence of cheats and/or cooperative behaviours being maintained despite the presence of cheats. These observations have been presented as evidence for selection favouring cheating at the population level. This apparent contradiction arises when cheating is defined simply by the reduced expression of a cooperative trait and not in terms of the social costs and benefits of the trait under investigation. Here, we use two social traits, quorum sensing and iron‐scavenging siderophore production in Pseudomonas aeruginosa, to illustrate the importance of defining cheating by the social costs and benefits. We show that whether a strain is a cheat depends on the costs and benefits associated with the social and abiotic environment and not the absolute expression of a cooperative trait.  相似文献   

5.
Microbes have the potential to be highly cooperative organisms. The archetype of microbial cooperation is often considered to be the secretion of siderophores, molecules scavenging iron, where cooperation is threatened by “cheater” genotypes that use siderophores without making them. Here, we show that this view neglects a key piece of biology: siderophores are imported by specific receptors that constrain their use by competing strains. We study the effect of this specificity in an ecoevolutionary model, in which we vary siderophore sharing among strains, and compare fully shared siderophores with private siderophores. We show that privatizing siderophores fundamentally alters their evolution. Rather than a canonical cooperative good, siderophores become a competitive trait used to pillage iron from other strains. We also study the physiological regulation of siderophores using in silico long‐term evolution. Although shared siderophores evolve to be downregulated in the presence of a competitor, as expected for a cooperative trait, privatized siderophores evolve to be upregulated. We evaluate these predictions using published experimental work, which suggests that some siderophores are upregulated in response to competition akin to competitive traits like antibiotics. Although siderophores can act as a cooperative good for single genotypes, we argue that their role in competition is fundamental to understanding their biology.  相似文献   

6.
There has been extensive theoretical debate over whether population viscosity (limited dispersal) can favour cooperation. While limited dispersal increases the probability of interactions occurring between relatives, which can favour cooperation, it can also lead to an increase in competition between relatives and this can reduce or completely negate selection for cooperation. Despite much theoretical attention, there is a lack of empirical research investigating these issues. We cultured Pseudomonas aeruginosa bacteria in medium with different degrees of viscosity and examined the fitness consequences for a cooperative trait—the production of iron-scavenging siderophore molecules. We found that increasing viscosity of the growth medium (i) significantly limited bacterial dispersal and the diffusion of siderophore molecules and (ii) increased the fitness of individuals that produced siderophores relative to mutants that did not. We propose that viscosity favours siderophore-producing individuals in this system, because the benefits of siderophore production are more likely to accrue to relatives (i.e. greater indirect benefits), and, at the same time, bacteria are more likely to gain direct fitness benefits by taking up siderophore molecules produced by themselves (i.e. the trait becomes less cooperative). Our results suggest that viscosity of the microbial growth environment is a crucial factor determining the dynamics of wild-type bacteria and siderophore-deficient mutants in natural habitats, such as the viscous mucus in cystic fibrosis lung.  相似文献   

7.
The production of beneficial public goods is common in the microbial world, and so is cheating – the exploitation of public goods by nonproducing mutants. Here, we examine co‐evolutionary dynamics between cooperators and cheats and ask whether cooperators can evolve strategies to reduce the burden of exploitation, and whether cheats in turn can improve their exploitation abilities. We evolved cooperators of the bacterium Pseudomonas aeruginosa, producing the shareable iron‐scavenging siderophore pyoverdine, together with cheats, defective in pyoverdine production but proficient in uptake. We found that cooperators managed to co‐exist with cheats in 56% of all replicates over approximately 150 generations of experimental evolution. Growth and competition assays revealed that co‐existence was fostered by a combination of general adaptions to the media and specific adaptions to the co‐evolving opponent. Phenotypic screening and whole‐genome resequencing of evolved clones confirmed this pattern, and suggest that cooperators became less exploitable by cheats because they significantly reduced their pyoverdine investment. Cheats, meanwhile, improved exploitation efficiency through mutations blocking the costly pyoverdine‐signalling pathway. Moreover, cooperators and cheats evolved reduced motility, a pattern that likely represents adaptation to laboratory conditions, but at the same time also affects social interactions by reducing strain mixing and pyoverdine sharing. Overall, we observed parallel evolution, where co‐existence of cooperators and cheats was enabled by a combination of adaptations to the abiotic and social environment and their interactions.  相似文献   

8.
For decades, myxobacteria have been spotlighted as exemplars of social “wolf‐pack” predation, communally secreting antimicrobial substances into the shared public milieu. This behavior has been described as cooperative, becoming more efficient if performed by more cells. However, laboratory evidence for cooperativity is limited and of little relevance to predation in a natural setting. In contrast, there is accumulating evidence for predatory mechanisms promoting “selfish” behavior during predation, which together with conflicting definitions of cooperativity, casts doubt on whether microbial “wolf‐pack” predation really is cooperative. Here, it is hypothesized that public‐goods‐mediated predation is not cooperative, and it is argued that a holistic model of microbial predation is needed, accounting for predator and prey relatedness, social phenotypes, spatial organization, activity/specificity/transport of secreted toxins, and prey resistance mechanisms. Filling such gaps in our knowledge is vital if the evolutionary benefits of potentially costly microbial behaviors mediated by public goods are to be properly understood.  相似文献   

9.
The evolution of group living is generally associated with the emergence of social behaviors that ensure fitness benefits to group members. However, the expression of these behaviors may depend on group composition, which can vary over time with respect to sex, starvation status, and relatedness. Here, we investigated (1) whether adults of the group‐living European earwig, Forficula auricularia, show cooperative behaviors toward conspecifics and (2) whether sex, food availability, and relatedness shape the nature and frequency of these behaviors. We conducted a full‐factorial experiment using 108 unisexual pairs of adults, in which we manipulated these three factors and video‐recorded the earwig behaviors for 45 min. Our results revealed that adults mostly expressed self‐directed and aggressive behaviors. Nevertheless, they also showed allogrooming, a social behavior that offers scope for cooperation. Pairs of males displayed longer bouts of aggression and allogrooming (when it occurred) than pairs of females. Food deprivation had no effect on male behaviors, but females spent less time self‐grooming and walking when they were food deprived. Finally, low relatedness between adults did not influence any of the measured behaviors, but exacerbated frass production, possibly due to social stress. Overall, these results indicate the limited role of cooperation among F. auricularia adults during their group‐living phase.  相似文献   

10.
Although cooperative systems can persist in nature despite the potential for exploitation by noncooperators, it is often observed that small changes in population demography can tip the balance of selective forces for or against cooperation. Here we consider the role of population density in the context of microbial cooperation. First, we account for conflicting results from recent studies by demonstrating theoretically that: (1) for public goods cooperation, higher densities are relatively unfavorable for cooperation; (2) in contrast, for self-restraint–type cooperation, higher densities can be either favorable or unfavorable for cooperation, depending on the details of the system. We then test our predictions concerning public goods cooperation using strains of the pathogenic bacterium Pseudomonas aeruginosa that produce variable levels of a public good—iron-scavenging siderophore molecules. As predicted, we found that the relative fitness of cheats (under-producers) was greatest at higher population densities. Furthermore, as assumed by theory, we show that this occurs because cheats are better able to exploit the cooperative siderophore production of other cells when they are physically closer to them.  相似文献   

11.
12.
Cooperation underlies diverse phenomena including the origins of multicellular life, human behaviour in economic markets and the mechanisms by which pathogenic bacteria cause disease. Experiments with microorganisms have advanced our understanding of how, when and why cooperation evolves, but the extent to which microbial cooperation can recapitulate aspects of animal behaviour is debated. For instance, understanding the evolution of behavioural response rules (how should one individual respond to another's decision to cooperate or defect?) is a key part of social evolution theory, but the possible existence of such rules in social microbes has not been explored. In one specific context (biparental care in animals), cooperation is maintained if individuals respond to a partner's defection by increasing their own investment into cooperation, but not so much that this fully compensates for the defector's lack of investment. This is termed ‘partial compensation’. Here, I show that partial compensation for the presence of noncooperating ‘cheats’ is also observed in a microbial social behaviour: the cooperative production of iron‐scavenging siderophores by the bacterium Pseudomonas aeruginosa. A period of evolution in the presence of cheats maintains this response, whereas evolution in the absence of cheats leads to a loss of compensatory behaviour. These results demonstrate (i) the remarkable flexibility of bacterial social behaviour, (ii) the potential generality of partial compensation as a social response rule and (iii) the need for mathematical models to explore the evolution of response rules in multi‐player social interactions.  相似文献   

13.
Cooperation can be favoured through the green‐beard mechanism, where a set of linked genes encodes both a cooperative trait and a phenotypic marker (green beard), which allows carriers of the trait to selectively direct cooperative acts to other carriers. In theory, the green‐beard mechanism should favour cooperation even when interacting partners are totally unrelated at the genome level. Here, we explore such an extreme green‐beard scenario between two unrelated bacterial species—Pseudomonas aeruginosa and Burkholderia cenocepacia, which share a cooperative locus encoding the public good pyochelin (an iron‐scavenging siderophore) and its cognate receptor (green beard) required for iron–pyochelin uptake. We show that pyochelin, when provided in cell‐free supernatants, can be mutually exchanged between species and provide fitness benefits under iron limitation. However, in co‐culture we observed that these cooperative benefits vanished and communities were dominated by P. aeruginosa, regardless of strain background and species starting frequencies. Our results further suggest that P. aeruginosa engages in interference competition to suppress B. cenocepacia, indicating that inter‐species conflict arising from dissimilarities at the genome level overrule the aligned cooperative interests at the pyochelin locus. Thus, green‐beard cooperation is subdued by competition, indicating that interspecific siderophore cooperation is difficult to evolve and to be maintained.  相似文献   

14.
Structural backbones of iron‐scavenging siderophore molecules include polyamines 1,3‐diaminopropane and 1,5‐diaminopentane (cadaverine). For the cadaverine‐based desferroxiamine E siderophore in Streptomyces coelicolor, the corresponding biosynthetic gene cluster contains an ORF encoded by desA that was suspected of producing the cadaverine (decarboxylated lysine) backbone. However, desA encodes an l ‐2,4‐diaminobutyrate decarboxylase (DABA DC) homologue and not any known form of lysine decarboxylase (LDC). The only known function of DABA DC is, together with l ‐2,4‐aminobutyrate aminotransferase (DABA AT), to synthesize 1,3‐diaminopropane. We show here that S. coelicolor desA encodes a novel LDC and we hypothesized that DABA DC homologues present in siderophore biosynthetic clusters in the absence of DABA AT ORFs would be novel LDCs. We confirmed this by correctly predicting the LDC activity of a DABA DC homologue from a Yersinia pestis siderophore biosynthetic pathway. The corollary was confirmed for a DABA DC homologue, adjacent to a DABA AT ORF in a siderophore pathway in the cyanobacterium Anabaena variabilis, which was shown to be a bona fide DABA DC. These findings enable prediction of whether a siderophore pathway will utilize 1,3‐diaminopropane or cadaverine, and suggest that the majority of bacteria use DABA AT and DABA DC for siderophore, rather than norspermidine/polyamine biosynthesis.  相似文献   

15.
Micro‐organisms are known to exhibit phenotypic plasticity in response to changes in their environment. Recent studies have shown that a parasite strain can adjust its host exploitation strategies to the presence of unrelated strains, e.g. for Plasmodium chabaudi by adjusting its sex‐ratio. J. Evol. Biol. 2013; 26 : 1370–1378 claims to report a similar plastic response to the presence of unrelated strains in the case of siderophore‐producing bacteria. I argue that she does not provide sufficient evidence to support the interpretation of the plastic response she observes (increasing siderophore production in the presence of cheaters) through a cooperator/cheater framework. I show that known plastic responses to physicochemical factors, such as siderophore or iron concentration, seem to offer a clearer and more parsimonious explanation. Finally, I also challenge the parallel she makes between the process she observes in siderophore‐producing bacteria and compensation in bi‐parental care models.  相似文献   

16.
Some microbial public goods can provide both individual and community‐wide benefits, and are open to exploitation by non‐producing species. One such example is the production of metal‐detoxifying siderophores. Here, we investigate whether conflicting selection pressures on siderophore production by heavy metals – a detoxifying effect of siderophores, and exploitation of this detoxifying effect – result in a net increase or decrease. We show that the proportion of siderophore‐producing taxa increases along a natural heavy metal gradient. A causal link between metal contamination and siderophore production was subsequently demonstrated in a microcosm experiment in compost, in which we observed changes in community composition towards taxa that produce relatively more siderophores following copper contamination. We confirmed the selective benefit of siderophores by showing that taxa producing large amounts of siderophore suffered less growth inhibition in toxic copper. Our results suggest that ecological selection will favour siderophore‐mediated decontamination, with important consequences for potential remediation strategies.  相似文献   

17.
The idea that competition and aggression are central to an understanding of the origins of group‐living and sociality among human and nonhuman primates is the dominant theory in primatology today. Using this paradigm, researchers have focused their attention on competitive and aggressive behaviors, and have tended to overlook the importance of cooperative and affiliative behaviors. However, cooperative and affiliative behaviors are considerably more common than agonistic behaviors in all primate species. The current paradigm often fails to explain the context, function, and social tactics underlying affiliative and agonistic behavior. Here, we present data on a basic question of primate sociality: how much time do diurnal, group‐living primates spend in social behavior, and how much of this time is affiliative and agonistic? These data are derived from a survey of 81 studies, including 28 genera and 60 species. We find that group‐living prosimians, New World monkeys, Old World monkeys, and apes usually devote less than 10% of their activity budget to active social interactions. Further, rates of agonistic behaviors are extremely low, normally less than 1% of the activity budget. If the cost to the actors of affiliative behavior is low even if the rewards are low or extremely variable, we should expect affiliation and cooperation to be frequent. This is especially true under conditions in which individuals benefit from the collective environment of living in stable social groups. Am J Phys Anthropol 128:84–97, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

18.
There is strong evidence that natural selection can favour phenotypic plasticity as a mechanism to maximize fitness in animals. Here, we aim to investigate phenotypic plasticity of a cooperative trait in bacteria – the production of an iron‐scavenging molecule (pyoverdin) by Pseudomonas aeruginosa. Pyoverdin production is metabolically costly to the individual cell, but provides a benefit to the local group and can potentially be exploited by nonpyoverdin‐producing cheats. Here, we subject bacteria to changes in the social environment in media with different iron availabilities and test whether cells can adjust pyoverdin production in response to these changes. We found that pyoverdin production per cell significantly decreased at higher cell densities and increased in the presence of cheats. This phenotypic plasticity significantly influenced the costs and benefits of cooperation. Specifically, the investment of resources into pyoverdin production was reduced in iron‐rich environments and at high cell densities, but increased under iron limitation, and when pyoverdin was exploited by cheats. Our study demonstrates that phenotypic plasticity in a cooperative trait as a response to changes in the environment occurs in even the simplest of organisms, a bacterium.  相似文献   

19.
Phenotypic plasticity in response to competition is a well‐described phenomenon in higher organisms. Here, we show that also bacteria have the ability to sense the presence of competitors and mount fine‐tuned responses to match prevailing levels of competition. In our experiments, we studied interspecific competition for iron between the bacterium Pseudomonas aeruginosa (PA) and its competitor Burkholderia cenocepacia (BC). We focused on the ability of PA to phenotypically adjust the production of pyoverdine, an iron‐scavenging siderophore. We found that PA upregulates pyoverdine production early on during competition under condition of low iron availability. This plastic upregulation was fine‐tuned in response to the level of competition imposed by BC, and seems to confer a relative fitness benefit to PA in the form of an earlier initiation of growth. At later time points, however, PA showed reduced growth in mixed compared to monoculture, suggesting that competitive responses are costly. Altogether, our results demonstrate that phenotypic plasticity in siderophore production plays an important role in interspecific competition for iron. Upregulating siderophore production may be a powerful strategy to lock iron away from competing species, and to reserve this nutrient for strain members possessing the compatible receptor for uptake.  相似文献   

20.
Social interactions have been shown to play an important role in bacterial evolution and virulence. The majority of empirical studies conducted have only considered social traits in isolation, yet numerous social traits, such as the production of spiteful bacteriocins (anticompetitor toxins) and iron‐scavenging siderophores (a public good) by the opportunistic pathogen Pseudomonas aeruginosa, are frequently expressed simultaneously. Crucially, both bacteriocin production and siderophore cheating can be favored under the same competitive conditions, and we develop theory and carry out experiments to determine how the success of a bacteriocin‐producing genotype is influenced by social cheating of susceptible competitors and the resultant impact on disease severity (virulence). Consistent with our theoretical predictions, we find that the spiteful genotype is favored at higher local frequencies when competing against public good cheats. Furthermore, the relationship between spite frequency and virulence is significantly altered when the spiteful genotype is competed against cheats compared with cooperators. These results confirm the ecological and evolutionary importance of considering multiple social traits simultaneously. Moreover, our results are consistent with recent theory regarding the invasion conditions for strong reciprocity (helping cooperators and harming noncooperators).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号