首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Variability and future alterations in regional and global climate patterns may exert a strong control on the carbon dioxide (CO2) exchange of grassland ecosystems. We used 6 years of eddy-covariance measurements to evaluate the impacts of seasonal and inter-annual variations in environmental conditions on the net ecosystem CO2 exchange (NEE), gross ecosystem production (GEP), and ecosystem respiration (ER) of an intensively managed grassland in the humid temperate climate of southern Ireland. In all the years of the study period, considerable uptake of atmospheric CO2 occurred in this grassland with a narrow range in the annual NEE from −245 to −284 g C m−2 y−1, with the exception of 2008 in which the NEE reached −352 g C m−2 y−1. None of the measured environmental variables (air temperature (Ta), soil moisture, photosynthetically active radiation, vapor pressure deficit (VPD), precipitation (PPT), and so on) correlated with NEE on a seasonal or annual scale because of the equal responses from the component fluxes GEP and ER to variances in these variables. Pronounced reduction of summer PPT in two out of the six studied years correlated with decreases in both GEP and ER, but not with NEE. Thus, the stable annual NEE was primarily achieved through a strong coupling of ER and GEP on seasonal and annual scales. Limited inter-annual variations in Ta (±0.5°C) and generally sufficient soil moisture availability may have further favored a stable annual NEE. Monthly ecosystem carbon use efficiency (CUE; as the ratio of NEE:GEP) during the main growing season (April 1–September 30) was negatively correlated with temperature and VPD, but positively correlated with soil moisture, whereas the annual CUE correlated negatively with annual NEE. Thus, although drier and warmer summers may mildly reduce the uptake potential, the annual uptake of atmospheric CO2, in this intensively managed grassland, may be expected to continue even under predicted future climatic changes in the humid temperate climate region.  相似文献   

2.
Switchgrass (Panicum virgatum L.) has gained importance as feedstock for bioenergy over the last decades due to its high productivity for up to 20 years, low input requirements, and potential for carbon sequestration. However, data on the dynamics of CO2 exchange of mature switchgrass stands (>5 years) are limited. The objective of this study was to determine net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary production (GPP) for a commercially managed switchgrass field in its sixth (2012) and seventh (2013) year in southern Ontario, Canada, using the eddy covariance method. Average NEE flux over two growing seasons (emergence to harvest) was ?10.4 μmol m?2 s?1 and reached a maximum uptake of ?42.4 μmol m?2 s?1. Total annual NEE was ?380 ± 25 and ?430 ± 30 g C m?2 in 2012 and 2013, respectively. GPP reached ?1354 ± 23 g C m?2 in 2012 and ?1430 ± 50g C m?2 in 2013. Annual Re in 2012 was 974 ± 20 g C m?2 and 1000 ± 35 g C m?2 in 2013. GPP during the dry year of 2012 was significantly lower than that during the normal year of 2013, but yield was significantly higher in 2012 with 1090 g  m?2, compared to 790 g m?2 in 2013. If considering the carbon removed at harvest, the net ecosystem carbon balance came to 106 ± 45 g C  m?2 in 2012, indicating a source of carbon, and to ?59 ± 45 g C m?2 in 2013, indicating a sink of carbon. Our results confirm that switchgrass can switch between being a sink and a source of carbon on an annual basis. More studies are needed which investigate this interannual variability of the carbon budget of mature switchgrass stands.  相似文献   

3.
Expansion of deciduous shrubs is a common observation throughout the Arctic, with implications for carbon (C) cycling. Shrubs may increase net ecosystem C uptake through greater leaf area and gross ecosystem photosynthesis (GEP), and/or through cooler summer soils and reduced ecosystem respiration (ER). We used a space-for-time substitution combined with experimental warming at a Low Arctic site in West Greenland to examine the biophysical effects of increased temperature and Betula nana abundance on ecosystem CO2 exchange. Communities dominated by Betula were much stronger C sinks than graminoid communities due to greater GEP and lower ER. The warming treatment had little effect on GEP, ER, or net ecosystem CO2 exchange (NEE). The start of the growing season has been advancing at our study site, as indicated by long-term observations of plant phenology. In a retrospective analysis, we estimate that earlier onset of the growing season has increased the strength of the ecosystem C sink at rates of 1.3 and 2.1 g C m?2 y?1 in Betula and graminoid tundra, respectively, since 2002. However, earlier, and presumably longer, growing seasons may be associated with greater potential for drought stress. Our data suggest that mid-summer drought-induced GEP declines may partially offset C gains associated with an earlier start to the growing season. Our results suggest greater deciduous shrub abundance and longer growing seasons will likely lead to greater net C uptake in our study area, while highlighting important complexities associated with drought and plant community composition.  相似文献   

4.
Climate change may alter the terrestrial ecosystem carbon balance in the Arctic, and previous studies have emphasized the importance of cold season gas exchange when considering the annual carbon balance. Here, we examined gross ecosystem production (GEP), ecosystem respiration (R eco) and net ecosystem exchange (NEE) during autumn at a high arctic dry open heath, over a period where air temperatures decreased from +9.8 to ?16.5°C. GEP declined by 95–100% during autumn but GEP significantly different from 0 was measured on October 8 despite sub-zero temperatures. R eco declined by 90% and dominated NEE throughout the study as the ecosystem on all measurement days was a source of atmospheric CO2. We estimated net September carbon losses (NEE) to be 17?g?CO2?m?2, emphasizing the importance of autumn in relation to annual carbon budgets. The study site has been subjected to 14 summers of water addition, and occasional pulses of nitrogen (N) addition in a fully factorial design. N addition enhanced GEP up to 17-fold during September, although there was no effect in October when GEP was very low. Summer water addition decreased autumn R eco by up to 25%. Both N amendment and water addition decreased carbon loss, that is, increased NEE; N amendment increased NEE on all dates by 13–64% whereas water addition increased NEE by 20–54% late in September and onward, demonstrating the importance of nutrient and water availability on carbon balance in high arctic tundra, also during the autumn freeze-in.  相似文献   

5.
Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID‐Δ) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long‐term (9 years) warmed (~2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2‐C m?2 season?1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ~10%, especially in the first half of the summer. During the ~70 days growing season (mid‐June–mid‐August), the dry and wet tundra ecosystems were net CO2‐C sinks (30 and 67 g C m?2 season?1, respectively) and the mesic ecosystem was a net C source (58 g C m?2 season?1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ~12% in dry tundra, but reduced net C uptake by ~20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long‐term warming with ~30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m?2 season?1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long‐term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long‐term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2‐C exchange rates ranged from losses of 64 g C m?2 yr?1 to gains of 55 g C m?2 yr?1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests.  相似文献   

6.
This study reports the annual carbon balance of a drained riparian fen under two‐cut or three‐cut managements of festulolium and tall fescue. CO2 fluxes measured with closed chambers were partitioned into gross primary production (GPP) and ecosystem respiration (ER) for modelling according to environmental factors (light and temperature) and canopy reflectance (ratio vegetation index, RVI). Methodological assessments were made of (i) GPP models with or without temperature functions (Ft) to adjust GPP constraints imposed by low temperature (<10 °C) and (ii) ER models with RVI or GPP parameters as biomass proxies. The sensitivity of the models was also tested on partial datasets including only alternate measurement campaigns and on datasets only from the crop growing period. Use of Ft in GPP models effectively corrected GPP overestimation in cold periods, and this approach was used throughout. Annual fluxes obtained with ER models including RVI or GPP parameters were similar, and also annual GPP and ER fluxes obtained with full and partial datasets were similar. Annual CO2 fluxes and biomass yield were not significantly different in the crop/management combinations although the individual collars (n = 12) showed some variations in GPP (?1818 to ?2409 g CO2‐C m?2), ER (1071 to 1738 g CO2‐C m?2), net ecosystem exchange (NEE, ?669 to ?949 g CO2‐C m?2) and biomass yield (556 to 1044 g CO2‐C m?2). Net ecosystem carbon balance (NECB), as the sum of NEE and biomass carbon export, was only slightly negative to positive in all crop/management combinations. NECBs, interpreted as emission factors, tended to favour the least biomass producing systems as the best management options in relation to climate saving carbon balances. Yet, considering the down‐stream advantages of biomass for fossil fuel replacement, yield‐scaled carbon fluxes are suggested to be given additional considerations for comparison of management options in terms of atmospheric impact.  相似文献   

7.
This paper presents results of 1 year (from March 25, 2003 to March 24, 2004, 366 days) of continuous measurements of net ecosystem CO2 exchange (NEE) above a steppe in Mongolia using the eddy covariance technique. The steppe, typical of central Mongolia, is dominated by C3 plants adapted to the continental climate. The following two questions are addressed: (1) how do NEE and its components: gross ecosystem production (GEP) and total ecosystem respiration (Reco) vary seasonally? (2) how do NEE, GEP, and Reco respond to biotic and abiotic factors? The hourly minimal NEE and the hourly maximal Reco were −3.6 and 1.2 μmol m−2 s−1, respectively (negative values denoting net carbon uptake by the canopy from the atmosphere). Peak daily sums of NEE, GEP, and Reco were −2.3, 3.5, and 1.5 g C m−2 day−1, respectively. The annual sums of GEP, Reco, and NEE were 179, 138, and −41 g C m−2, respectively. The carbon removal by sheep was estimated to range between 10 and 82 g C m−2 yr−1 using four different approaches. Including these estimates in the overall carbon budget yielded net ecosystem productivity of −23 to +20 g C m−2 yr−1. Thus, within the remaining experimental uncertainty the carbon budget at this steppe site can be considered to be balanced. For the growing period (from April 23 to October 21, 2003), 26% and 53% of the variation in daily NEE and GEP, respectively, could be explained by the changes in leaf area index. Seasonality of GEP, Reco, and NEE was closely associated with precipitation, especially in the peak growing season when GEP and Reco were largest. Water stress was observed in late July to early August, which switched the steppe from a carbon sink to a carbon source. For the entire growing period, the light response curves of daytime NEE showed a rather low apparent quantum yield (α=−0.0047 μmol CO2 μmol−1 photons of photosynthetically active radiation). However, the α values varied with air temperature (Ta), vapor pressure deficit, and soil water content.  相似文献   

8.
Switchgrass (Panicum virgatum L.) is a perennial lignocellulosic crop that has gained large interest as a feedstock for advanced biofuels. Using an eddy covariance system, we monitored the net ecosystem gas exchange in a 5‐ha rainfed switchgrass crop located in the Po River Valley for four consecutive years after land‐use change from annual food crops. Switchgrass absorbed 58.2 Mg CO2 ha?1 year?1 (GPP—gross primary production), of which 24.5 (42%) were fixed by the ecosystem (NEE—net ecosystem exchange). Cumulated NEE was negative (i.e. C sink) even in the establishment year when biomass and canopy photosynthesis are considerably lower compared to the following years. Taking into account the last 3 years only (postestablishment years), mean NEE was ?26.9 Mg CO2 ha?1 year?1. When discounted of the removed switchgrass biomass, ecosystem CO2 absorption was still high and corresponded to ?8.4 Mg CO2 ha?1 year?1. The estimation of the life cycle global warming effect made switchgrass an even greater sink (?12.4 Mg CO2 ha?1 year?1), thanks to the credits obtained with fossil fuels displacement. Water use efficiency (WUE), that is the ratio of NEE to the water used by the crop as the flux of transpiration (ET), corresponded to 1.6 mg C g?1 of H2O, meaning that, on average, 170 m3 of water was needed to fix 1 Mg of CO2. Again, considering only the postestablishment years, WUE was 1.7 mg C g?1 of H2O. In the end, about half of annual precipitation was used by the crop every year. We conclude that switchgrass can be a valuable crop to capture significant amount of atmospheric CO2 while preserving water reserves and estimated that its potential large‐scale deployment in the Mediterranean could lead to an annual greenhouse gas emission reduction up to 0.33% for the EU.  相似文献   

9.
The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long‐term, multi‐level and multi‐factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m?2) were applied and the higher level was combined with supplemental summer rain. We made plot‐level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ13C and NDVI to examine responses to our treatments at ecosystem‐ and leaf‐levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2‐C budgets. Low‐level warming increased the magnitude of the ecosystem C sink. Meanwhile, high‐level warming made the ecosystem a source of C to the atmosphere. When high‐level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low‐level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf‐level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf‐level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain.  相似文献   

10.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   

11.
Tropical peatlands have accumulated huge soil carbon over millennia. However, the carbon pool is presently disturbed on a large scale by land development and management, and consequently has become vulnerable. Peat degradation occurs most rapidly and massively in Indonesia, because of fires, drainage, and deforestation of swamp forests coexisting with tropical peat. Peat burning releases carbon dioxide (CO2) intensively but occasionally, whereas drainage increases CO2 emission steadily through the acceleration of aerobic peat decomposition. Therefore, tropical peatlands present the threat of switching from a carbon sink to a carbon source to the atmosphere. However, the ecosystem‐scale carbon exchange is still not known in tropical peatlands. A long‐term field experiment in Central Kalimantan, Indonesia showed that tropical peat ecosystems, including a relatively intact peat swamp forest with little drainage (UF), a drained swamp forest (DF), and a drained burnt swamp forest (DB), functioned as net carbon sources. Mean annual net ecosystem CO2 exchange (NEE) (± a standard deviation) for 4 years from July 2004 to July 2008 was 174 ± 203, 328 ± 204 and 499 ± 72 gC m?2 yr?1, respectively, for the UF, DF, and DB sites. The carbon emissions increased according to disturbance degrees. We found that the carbon balance of each ecosystem was chiefly controlled by groundwater level (GWL). The NEE showed a linear relationship with GWL on an annual basis. The relationships suggest that annual CO2 emissions increase by 79–238 gC m?2 every 0.1 m of GWL lowering probably because of the enhancement of oxidative peat decomposition. In addition, CO2 uptake by vegetation photosynthesis was reduced by shading due to dense smoke from peat fires ignited accidentally or for agricultural practices. Our results may indicate that tropical peatland ecosystems are no longer a carbon sink under the pressure of human activities.  相似文献   

12.
High irradiance arid environments are promising, yet understudied, areas for biofuel production. We investigated the productivity and environmental trade‐offs of growing sorghum (Sorghum bicolor) as a biofuel feedstock in the low deserts of California (CA). Using a 5.3 ha experimental field in the Imperial Valley, CA, we measured aboveground biomass production and net ecosystem exchange of CO2 and H2O via eddy covariance over three growing periods between February and November 2012. Environmental conditions were extreme, with high irradiance, vapor pressure deficit (VPD), and air temperature throughout the growing season. Air temperature peaked in August with a maximum of 45.7 °C. Sorghum produced an annual aboveground biomass yield of 43.7 Mg per hectare. Net ecosystem exchange (NEE) was highest during the summer growth period and reached a maximum of ?68 μmol CO2 m?2 s?1. Water use efficiency, or biomass water ratio (BWR), was high (4.0 g dry biomass kg?1 H2O) despite high seasonal evapotranspiration (1094 kg H2O m?2). The BWR of sorghum surpassed that of many C4 biofuel candidate crops in the United States, as well as that of alfalfa which is currently widely grown in the Imperial Valley. Sorghum also outperformed many US biofuel crops in terms of radiation use efficiency (RUE), achieving 1.5 g dry biomass MJ?1. We found no evidence of saturation of NEE at high levels of photosynthetically active radiation (PAR) (up to 2250 μmol m?2 s?1). In addition, we found no evidence that NEE was inhibited by either high VPD or air temperature during peak photosynthetic phases. The combination of high productivity, high BWR, and high RUE suggests that sorghum is well adapted to this extreme environment. The biomass production rates and efficiency metrics spanning three growing periods provide fundamental data for future Life Cycle Assessments (LCA), which are needed to assess the sustainability of this sorghum biofuel feedstock system.  相似文献   

13.
The net exchange of CO2 (NEE) between a Scots pine (Pinus sylvestris L.) forest ecosystem in eastern Finland and the atmosphere was measured continuously by the eddy covariance (EC) technique over 4 years (1999–2002). The annual temperature coefficient (Q10) of ecosystem respiration (R) for these years, respectively, was 2.32, 2.66, 2.73 and 2.69. The light‐saturated rate of photosynthesis (Amax) was highest in July or August, with an annual average Amax of 10.9, 14.6, 15.3 and 17.1 μmol m?2 s?1 in the 4 years, respectively. There was obvious seasonality in NEE, R and gross primary production (GPP), exhibiting a similar pattern to photosynthetically active radiation (PAR) and air temperature. The integrated daily NEE ranged from 2.59 to ?4.97 g C m?2 day?1 in 1999, from 2.70 to ?4.72 in 2000, from 2.61 to ?4.71 in 2001 and from 5.27 to ?4.88 in 2002. The maximum net C uptake occurred in July, with the exception of 2000, when it was in June. The interannual variation in ecosystem C flux was pronounced. The length of the growing season, based on net C uptake, was 179, 170, 175 and 176 days in 1999–2002, respectively, and annual net C sequestration was 152, 101, 172 and 205 g C m?2 yr?1. It is estimated that ecosystem respiration contributed 615, 591, 752 and 879 g C m?2 yr?1 to the NEE in these years, leading to an annual GPP of ?768, ?692, ?924 and ?1084 g C m?2 yr?1. It is concluded that temperature and PAR were the main determinants of the ecosystem CO2 flux. Interannual variations in net C sequestration are predominantly controlled by average air temperature and integrated radiation in spring and summer. Four years of EC data indicate that boreal Scots pine forest ecosystem in eastern Finland acts as a relatively powerful carbon sink. Carbon sequestration may benefit from warmer climatic conditions.  相似文献   

14.
We present the annual patterns of net ecosystem‐atmosphere exchange (NEE) of CO2 and H2O observed from a 447 m tall tower sited within a mixed forest in northern Wisconsin, USA. The methodology for determining NEE from eddy‐covariance flux measurements at 30, 122 and 396 m above the ground, and from CO2 mixing ratio measurements at 11, 30, 76, 122, 244 and 396 m is described. The annual cycle of CO2 mixing ratio in the atmospheric boundary layer (ABL) is also discussed, and the influences of local NEE and large‐scale advection are estimated. During 1997 gross ecosystem productivity (947?18 g C m?2 yr?1), approximately balanced total ecosystem respiration (963±19 g C m?2 yr?1), and NEE of CO2 was close to zero (16±19 g C m?2 yr?1 emitted into the atmosphere). The error bars represent the standard error of the cumulative daily NEE values. Systematic errors are also assessed. The identified systematic uncertainties in NEE of CO2 are less than 60 g C m?2 yr?1. The seasonal pattern of NEE of CO2 was highly correlated with leaf‐out and leaf‐fall, and soil thaw and freeze, and was similar to purely deciduous forest sites. The mean daily NEE of CO2 during the growing season (June through August) was ?1.3 g C m?2 day?1, smaller than has been reported for other deciduous forest sites. NEE of water vapor largely followed the seasonal pattern of NEE of CO2, with a lag in the spring when water vapor fluxes increased before CO2 uptake. In general, the Bowen ratios were high during the dormant seasons and low during the growing season. Evapotranspiration normalized by potential evapotranspiration showed the opposite pattern. The seasonal course of the CO2 mixing ratio in the ABL at the tower led the seasonal pattern of NEE of CO2 in time: in spring, CO2 mixing ratios began to decrease prior to the onset of daily net uptake of CO2 by the forest, and in fall mixing ratios began to increase before the forest became a net source for CO2 to the atmosphere. Transport as well as local NEE of CO2 are shown to be important components of the ABL CO2 budget at all times of the year.  相似文献   

15.
Bioenergy has been identified as a key component of climate change mitigation. Therefore, quantifying the net carbon balance of bioenergy feedstocks is crucial for accurate projections of climate mitigation benefits. Switchgrass (Panicum virgatum) has many characteristics of an ideal bioenergy crop with high yields, low maintenance, and deep roots with potential for belowground carbon sequestration. However, the assessments of net annual carbon exchange between switchgrass fields and the atmosphere are rare. Here we present observations of net carbon fluxes in a minimally managed switchgrass field in Virginia (Ameriflux site US-SB2) over 5 years (3–7 years since establishment). Average annual net ecosystem exchange (NEE) of carbon was near zero (60 g C m?2 year?1) but the net ecosystem carbon balance that includes harvested carbon (HC) was a net source of carbon to the atmosphere (313 g C m?2 year?1). The field alternated between a large and small source of carbon annually, with the interannual variability most strongly correlated with the day of the last frost and the interaction of temperature and precipitation. Overall, the consistent source of carbon to the atmosphere at US-SB2 differs substantially from other eddy covariance studies that report switchgrass fields to be either neutral or a sink of carbon when accounting for both NEE and HC. This study illustrates that predictions of net carbon climate benefits from bioenergy crops cannot assume that the ecosystem will be a net sink of carbon from the atmosphere. Background climate, management, and land-use history may determine whether widespread deployment of switchgrass as a bioenergy feedstock results in realized climate change mitigation.  相似文献   

16.
We develop an approach for estimating net ecosystem exchange (NEE) using inventory‐based information over North America (NA) for a recent 7‐year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non‐fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a ?327 ± 252 TgC yr?1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (?248 TgC yr?1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (?297 TgC yr?1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr?1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr?1) due to land use change between 1993 and 2002. We compare these inventory‐based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental‐scale NEE estimate for each ensemble is ?511 TgC yr?1 and ?931 TgC yr?1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional ?239 TgC yr?1 to the inventory‐based NA sink estimate, thus suggesting some convergence with the modeling approaches.  相似文献   

17.
Thus far, grassland ecosystem research has mainly been focused on low‐lying grassland areas, whereas research on high‐altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai‐Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37°36′N, 101°18′E; 325 above sea level [a. s. l.]) on the Qinghai‐Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol–Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (Reco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were ?58.5 and ?75.5 g C m?2, respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4–5 g C m?2 day?1) each of the 2 years. Also, the integrated night‐time NEE reached comparable peak values (1.5–2 g C m?2 day?1) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, Reco was an exponential function of soil temperature, but with season‐dependent values of Q10. The temperature‐dependent respiration model failed immediately after rain events, when large pulses of Reco were observed. Thus, for this alpine shrubland in Qinghai‐Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem Reco and NEE.  相似文献   

18.
Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non‐negligible portion of the carbon fixed by primary producers, but long‐term ecosystem‐scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (Populus) short‐rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha?1 yr?1, which represented 0.63% of the net ecosystem exchange (NEE), resulting from ?23.59 Mg C ha?1 yr?1 fixed as CO2 and 20.55 Mg C ha?1 yr?1 respired as CO2 from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO2 fixed. Based on annual ecosystem‐scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5–2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO2 and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.  相似文献   

19.
林晓雪  黄佳芳  李慧  仝川 《生态学报》2022,42(22):9186-9198
河口感潮沼泽是全球重要的蓝碳生态系统,具有很强的固碳能力。碳收支研究是量化生态系统碳源/汇过程及固碳规模的基础。本研究运用透明箱和不同遮光率布遮盖+红外气体分析仪/气相色谱相结合的方法,模拟不同光照条件,测定闽江河口鳝鱼滩半咸水芦苇沼泽和短叶茳芏沼泽的瞬时净生态系统二氧化碳(CO2)交换量(net ecosystem exchange,NEE)、生态系统呼吸(ecosystem respiration,ER)以及甲烷(CH4)排放通量,并通过对总光合吸收量(gross ecosystem exchange,GEE)与光合有效辐射的拟合以及ER与气温的拟合,外推2个沼泽生态系统CO2气体在月、年尺度上的NEE和ER,评估其年固碳量。2个沼泽生态系统的NEE和ER均具有明显的季节变化,春夏秋季为大气中CO2的汇,而冬季则转化为大气中CO2的源,芦苇沼泽年尺度固碳能力显著高于短叶茳芏沼泽。芦苇沼泽与短叶茳芏沼泽CH4排放通量差异不显著。综合考虑CH4排放,闽江河口鳝鱼滩半咸水芦苇沼泽、短叶茳芏沼泽生态系统年固碳量分别为(5371.52±336.97) g CO2-eq/m2和(2730.32±503.67) g CO2-eq/m2。研究表明:闽江河口半咸水沼泽湿地在年尺度上是一个较强的碳汇,在缓解全球变暖方面发挥着重要的角色。  相似文献   

20.
Similar nonsteady‐state automated chamber systems were used to measure and partition soil CO2 efflux in contrasting deciduous (trembling aspen) and coniferous (black spruce and jack pine) stands located within 100 km of each other near the southern edge of the Boreal forest in Canada. The stands were exposed to similar climate forcing in 2003, including marked seasonal variations in soil water availability, which provided a unique opportunity to investigate the influence of climate and stand characteristics on soil CO2 efflux and to quantify its contribution to the net ecosystem CO2 exchange (NEE) as measured with the eddy‐covariance technique. Partitioning of soil CO2 efflux between soil respiration (including forest‐floor vegetation) and forest‐floor photosynthesis showed that short‐ and long‐term temporal variations of soil CO2 efflux were related to the influence of (1) soil temperature and water content on soil respiration and (2) below‐canopy light availability, plant water status and forest‐floor plant species composition on forest‐floor photosynthesis. Overall, the three stands were weak to moderate sinks for CO2 in 2003 (NEE of ?103, ?80 and ?28 g C m?2 yr?1 for aspen, black spruce and jack pine, respectively). Forest‐floor respiration accounted for 86%, 73% and 75% of annual ecosystem respiration, in the three respective stands, while forest‐floor photosynthesis contributed to 11% and 14% of annual gross ecosystem photosynthesis in the black spruce and jack pine stands, respectively. The results emphasize the need to perform concomitant measurements of NEE and soil CO2 efflux at longer time scales in different ecosystems in order to better understand the impacts of future interannual climate variability and vegetation dynamics associated with climate change on each component of the carbon balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号