首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Determining underlying physiological patterns governing plant productivity and diversity in grasslands are critical to evaluate species responses to future environmental conditions of elevated CO2 and nitrogen (N) deposition. In a 9‐year experiment, N was added to monocultures of seven C3 grassland species exposed to elevated atmospheric CO2 (560 μmol CO2 mol?1) to evaluate how N addition affects CO2 responsiveness in species of contrasting functional groups. Functional groups differed in their responses to elevated CO2 and N treatments. Forb species exhibited strong down‐regulation of leaf Nmass concentrations (?26%) and photosynthetic capacity (?28%) in response to elevated CO2, especially at high N supply, whereas C3 grasses did not. Hence, achieved photosynthetic performance was markedly enhanced for C3 grasses (+68%) in elevated CO2, but not significantly for forbs. Differences in access to soil resources between forbs and grasses may distinguish their responses to elevated CO2 and N addition. Forbs had lesser root biomass, a lower distribution of biomass to roots, and lower specific root length than grasses. Maintenance of leaf N, possibly through increased root foraging in this nutrient‐poor grassland, was necessary to sustain stimulation of photosynthesis under long‐term elevated CO2. Dilution of leaf N and associated photosynthetic down‐regulation in forbs under elevated [CO2], relative to the C3 grasses, illustrates the potential for shifts in species composition and diversity in grassland ecosystems that have significant forb and grass components.  相似文献   

2.
As a consequence of land‐use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2. However, natural forests are often intimate mixtures of a number of co‐occurring species. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free‐air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 μmol mol?1) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change.  相似文献   

3.
Rising air temperatures are projected to reduce rice yield and quality, whereas increasing atmospheric CO2 concentrations ([CO2]) can increase grain yield. For irrigated rice, ponded water is an important temperature environment, but few open‐field evaluations are available on the combined effects of temperature and [CO2], which limits our ability to predict future rice production. We conducted free‐air CO2 enrichment and soil and water warming experiments, for three growing seasons to determine the yield and quality response to elevated [CO2] (+200 μmol mol?1, E‐[CO2]) and soil and water temperatures (+2 °C, E‐T). E‐[CO2] significantly increased biomass and grain yield by approximately 14% averaged over 3 years, mainly because of increased panicle and spikelet density. E‐T significantly increased biomass but had no significant effect on the grain yield. E‐T decreased days from transplanting to heading by approximately 1%, but days to the maximum tiller number (MTN) stage were reduced by approximately 8%, which limited the panicle density and therefore sink capacity. On the other hand, E‐[CO2] increased days to the MTN stage by approximately 4%, leading to a greater number of tillers. Grain appearance quality was decreased by both treatments, but E‐[CO2] showed a much larger effect than did E‐T. The significant decrease in undamaged grains (UDG) by E‐[CO2] was mainly the result of an increased percentage of white‐base grains (WBSG), which were negatively correlated with grain protein content. A significant decrease in grain protein content by E‐[CO2] accounted in part for the increased WBSG. The dependence of WBSG on grain protein content, however, was different among years; the slope and intercept of the relationship were positively correlated with a heat dose above 26 °C. Year‐to‐year variation in the response of grain appearance quality demonstrated that E‐[CO2] and rising air temperatures synergistically reduce grain appearance quality of rice.  相似文献   

4.
5.
Rising atmospheric carbon dioxide partial pressure (pCO2) and nitrogen (N) deposition are important components of global environmental change. In the Swiss free air carbon dioxide enrichment (FACE) experiment, the effect of altered atmospheric pCO2 (35 vs. 60 Pa) and the influence of two different N‐fertilization regimes (14 vs. 56 g N m?2 a?1) on root colonization by arbuscular mycorrhizal fungi (AMF) and other fungi (non‐AMF) of Lolium perenne and Trifolium repens were studied. Plants were grown in permanent monoculture plots, and fumigated during the growth period for 7 years. At elevated pCO2 AMF and non‐AMF root colonization was generally increased in both plant species, with significant effects on colonization intensity and on hyphal and non‐AMF colonization. The CO2 effect on arbuscules was marginally significant (P=0.076). Moreover, the number of small AMF spores (≤100 μm) in the soils of monocultures (at low‐N fertilization) of both plant species was significantly increased, whereas that of large spores (>100 μm) was increased only in L. perenne plots. N fertilization resulted in a significant decrease of root colonization in L. perenne, including the AMF parameters, hyphae, arbuscules, vesicles and intensity, but not in T. repens. This phenomenon was probably caused by different C‐sink limitations of grass and legume. Lacking effects of CO2 fumigation on intraradical AMF structures (under high‐N fertilization) and no response to N fertilization of arbuscules, vesicles and colonization intensity suggest that the function of AMF in T. repens was non‐nutritional. In L. perenne, however, AM symbiosis may have amended N nutrition, because all root colonization parameters were significantly increased under low‐N fertilization, whereas under high‐N fertilization only vesicle colonization was increased. Commonly observed P‐nutritional benefits from AMF appeared to be absent under the phosphorus‐rich soil conditions of our field experiment. We hypothesize that in well‐fertilized agricultural ecosystems, grasses benefit from improved N nutrition and legumes benefit from increased protection against pathogens and/or herbivores. This is different from what is expected in nutritionally limited plant communities.  相似文献   

6.
Desert annuals are a critically important component of desert communities and may be particularly responsive to increasing atmospheric (CO2) because of their high potential growth rates and flexible phenology. During the 10‐year life of the Nevada Desert FACE (free‐air CO2 enrichment) Facility, we evaluated the productivity, reproductive allocation, and community structure of annuals in response to long‐term elevated (CO2) exposure. The dominant forb and grass species exhibited accelerated phenology, increased size, and higher reproduction at elevated (CO2) in a wet El Niño year near the beginning of the experiment. However, a multiyear dry cycle resulted in no increases in productivity or reproductive allocation for the remainder of the experiment. At the community level, early indications of increased dominance of the invasive Bromus rubens at elevated (CO2) gave way to an absence of Bromus in the community during a drought cycle, with a resurgence late in the experiment in response to higher rainfall and a corresponding high density of Bromus in a final soil seed bank analysis, particularly at elevated (CO2). This long‐term experiment resulted in two primary conclusions: (i) elevated (CO2) does not increase productivity of annuals in most years; and (ii) relative stimulation of invasive grasses will likely depend on future precipitation, with a wetter climate favoring invasive grasses but currently predicted greater aridity favoring native dicots.  相似文献   

7.
Increased partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free‐air CO2 enrichment in a Liquidambar styraciflua L. (sweetgum) plantation in Oak Ridge, TN, USA, greater inputs of fine roots resulted in the incorporation of new C (i.e., C with a depleted δ13C) into root‐derived particulate organic matter (POM) pools to 90‐cm depth. Even though production in the sweetgum stand was limited by soil N availability, soil C and N contents were greater throughout the soil profile under elevated [CO2] at the conclusion of the experiment. Greater C inputs from fine‐root detritus under elevated [CO2] did not result in increased net N immobilization or C mineralization rates in long‐term laboratory incubations, possibly because microbial biomass was lower in the CO2‐enriched plots. Furthermore, the δ13CO2 of the C mineralized from the incubated soil closely tracked the δ13C of the labile POM pool in the elevated [CO2] treatment, especially in shallower soil, and did not indicate significant priming of the decomposition of pre‐experiment soil organic matter (SOM). Although potential C mineralization rates were positively and linearly related to total SOM C content in the top 30 cm of soil, this relationship did not hold in deeper soil. Taken together with an increased mean residence time of C in deeper soil pools, these findings indicate that C inputs from relatively deep roots under elevated [CO2] may increase the potential for long‐term soil C storage. However, C in deeper soil is likely to take many years to accrue to a significant fraction of total soil C given relatively smaller root inputs at depth. Expanded representation of biogeochemical cycling throughout the soil profile may improve model projections of future forest responses to rising atmospheric [CO2].  相似文献   

8.
Elevated atmospheric CO2 (eCO2) is expected to reduce the impacts of drought and increase photosynthetic rates via two key mechanisms: first, through decreased stomatal conductance (gs) and increased soil water content (VSWC) and second, through increased leaf internal CO2 (Ci) and decreased stomatal limitations (Slim). It is unclear if such findings from temperate grassland studies similarly pertain to warmer ecosystems with periodic water deficits. We tested these mechanisms in three important C3 herbaceous species in a periodically dry Eucalyptus woodland and investigated how eCO2‐induced photosynthetic enhancement varied with seasonal water availability, over a 3 year period. Leaf photosynthesis increased by 10%–50% with a 150 μmol mol?1 increase in atmospheric CO2 across seasons. This eCO2‐induced increase in photosynthesis was a function of seasonal water availability, given by recent precipitation and mean daily VSWC. The highest photosynthetic enhancement by eCO2 (>30%) was observed during the most water‐limited period, for example, with VSWC <0.07 in this sandy surface soil. Under eCO2 there was neither a significant decrease in gs in the three herbaceous species, nor increases in VSWC, indicating no “water‐savings effect” of eCO2. Periods of low VSWC showed lower gs (less than ≈ 0.12 mol m?2 s?1), higher relative Slim (>30%) and decreased Ci under the ambient CO2 concentration (aCO2), with leaf photosynthesis strongly carboxylation‐limited. The alleviation of Slim by eCO2 was facilitated by increasing Ci, thus yielding a larger photosynthetic enhancement during dry periods. We demonstrated that water availability, but not eCO2, controls gs and hence the magnitude of photosynthetic enhancement in the understory herbaceous plants. Thus, eCO2 has the potential to alter vegetation functioning in a periodically dry woodland understory through changes in stomatal limitation to photosynthesis, not by the “water‐savings effect” usually invoked in grasslands.  相似文献   

9.
Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO2 concentration ([CO2]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high‐yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO2] (A‐CO2 and E‐CO2, respectively) via leaf ecophysiological parameters derived from a free‐air CO2 enrichment (FACE) experiment. Takanari had 4%–5% higher evapotranspiration than Koshihikari under both A‐CO2 and E‐CO2, and E‐CO2 decreased evapotranspiration of both varieties by 4%–6%. Therefore, if Takanari was cultivated under future [CO2] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO2] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%–40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high‐stomatal conductance can play a key role in enhancing productivity and moderating heat‐induced damage to grain quality in the coming decades, without significantly increasing crop water use.  相似文献   

10.
  • The stimulatory effect of elevated [CO2] (e[CO2]) on crop production in future climates is likely to be cancelled out by predicted increases in average temperatures. This effect may become stronger through more frequent and severe heat waves, which are predicted to increase in most climate change scenarios. Whilst the growth and yield response of some legumes grown under the interactive effect of e[CO2] and heat waves has been studied, little is known about how N2 fixation and overall N metabolism is affected by this combination.
  • To address these knowledge gaps, two lentil genotypes were grown under ambient [CO2] (a[CO2], ~400 µmol·mol?1) and e[CO2] (~550 µmol·mol?1) in the Australian Grains Free Air CO2 Enrichment facility and exposed to a simulated heat wave (3‐day periods of high temperatures ~40 °C) at flat pod stage. Nodulation and concentrations of water‐soluble carbohydrates (WSC), total free amino acids, N and N2 fixation were assessed following the imposition of the heat wave until crop maturity.
  • Elevated [CO2] stimulated N2 fixation so that total N2 fixation in e[CO2]‐grown plants was always higher than in a[CO2], non‐stressed control plants. Heat wave triggered a significant decrease in active nodules and WSC concentrations, but e[CO2] had the opposite effect. Leaf N remobilization and grain N improved under interaction of e[CO2] and heat wave.
  • These results suggested that larger WSC pools and nodulation under e[CO2] can support post‐heat wave recovery of N2 fixation. Elevated [CO2]‐induced accelerated leaf N remobilisation might contribute to restore grain N concentration following a heat wave.
  相似文献   

11.
Leaf responses to elevated atmospheric CO2 concentration (Ca) are central to models of forest CO2 exchange with the atmosphere and constrain the magnitude of the future carbon sink. Estimating the magnitude of primary productivity enhancement of forests in elevated Ca requires an understanding of how photosynthesis is regulated by diffusional and biochemical components and up‐scaled to entire canopies. To test the sensitivity of leaf photosynthesis and stomatal conductance to elevated Ca in time and space, we compiled a comprehensive dataset measured over 10 years for a temperate pine forest of Pinus taeda, but also including deciduous species, primarily Liquidambar styraciflua. We combined over one thousand controlled‐response curves of photosynthesis as a function of environmental drivers (light, air Ca and temperature) measured at canopy heights up to 20 m over 11 years (1996–2006) to generate parameterizations for leaf‐scale models for the Duke free‐air CO2 enrichment (FACE) experiment. The enhancement of leaf net photosynthesis (Anet) in P. taeda by elevated Ca of +200 μmol mol?1 was 67% for current‐year needles in the upper crown in summer conditions over 10 years. Photosynthetic enhancement of P. taeda at the leaf‐scale increased by two‐fold from the driest to wettest growing seasons. Current‐year pine foliage Anet was sensitive to temporal variation, whereas previous‐year foliage Anet was less responsive and overall showed less enhancement (+30%). Photosynthetic downregulation in overwintering upper canopy pine needles was small at average leaf N (Narea), but statistically significant. In contrast, co‐dominant and subcanopy L. styraciflua trees showed Anet enhancement of 62% and no AnetNarea adjustments. Various understory deciduous tree species showed an average Anet enhancement of 42%. Differences in photosynthetic responses between overwintering pine needles and subcanopy deciduous leaves suggest that increased Ca has the potential to enhance the mixed‐species composition of planted pine stands and, by extension, naturally regenerating pine‐dominated stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号