首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Global climate change can significantly influence oceanic phytoplankton dynamics, and thus biogeochemical cycles and marine food webs. However, associative explanations based on the correlation between chlorophyll‐a concentration (Chl‐a) and climatic indices is inadequate to describe the mechanism of the connection between climate change, large‐scale atmospheric dynamics, and phytoplankton variability. Here, by analyzing multiple satellite observations of Chl‐a and atmospheric conditions from National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis datasets, we show that high‐latitude atmospheric blocking events over Alaska are the primary drivers of the recent decline of Chl‐a in the eastern North Pacific transition zone. These blocking events were associated with the persistence of large‐scale atmosphere pressure fields that decreased westerly winds and southward Ekman transport over the subarctic ocean gyre. Reduced southward Ekman transport leads to reductions in nutrient availability to phytoplankton in the transition zone. The findings describe a previously unidentified climatic factor that contributed to the recent decline of phytoplankton in this region and propose a mechanism of the top‐down teleconnection between the high‐latitude atmospheric circulation anomalies and the subtropical oceanic primary productivity. The results also highlight the importance of understanding teleconnection among atmosphere–ocean interactions as a means to anticipate future climate change impacts on oceanic primary production.  相似文献   

2.
A new generation of ocean colour satellites is now operational, with frequent observation of the global ocean. This paper reviews the potential to estimate marine primary production from satellite images. The procedures involved in retrieving estimates of phytoplankton biomass, as pigment concentrations, are discussed. Algorithms are applied to SeaWiFS ocean colour data to indicate seasonal variations in phytoplankton biomass in the Celtic Sea, on the continental shelf to the south west of the UK. Algorithms to estimate primary production rates from chlorophyll concentration are compared and the advantages and disadvantage discussed. The simplest algorithms utilise correlations between chlorophyll concentration and production rate and one equation is used to estimate daily primary production rates for the western English Channel and Celtic Sea; these estimates compare favourably with published values. Primary production for the central Celtic Sea in the period April to September inclusive is estimated from SeaWiFS data to be 102 gC m−2 in 1998 and 93 gC m−2 in 1999; published estimates, based on in situ incubations, are ca. 80 gC m−2. The satellite data demonstrate large variations in primary production between 1998 and 1999, with a significant increase in late summer in 1998 which did not occur in 1999. Errors are quantified for the estimation of primary production from simple algorithms based on satellite-derived chlorophyll concentration. These data show the potential to obtain better estimates of marine primary production than are possible with ship-based methods, with the ability to detect short-lived phytoplankton blooms. In addition, the potential to estimate new production from satellite data is discussed.  相似文献   

3.
Complex seasonal patterns of primary producers at the land-sea interface   总被引:1,自引:0,他引:1  
Cloern JE  Jassby AD 《Ecology letters》2008,11(12):1294-1303
Seasonal fluctuations of plant biomass and photosynthesis are key features of the Earth system because they drive variability of atmospheric CO2, water and nutrient cycling, and food supply to consumers. There is no inventory of phytoplankton seasonal cycles in nearshore coastal ecosystems where forcings from ocean, land and atmosphere intersect. We compiled time series of phytoplankton biomass (chlorophyll a) from 114 estuaries, lagoons, inland seas, bays and shallow coastal waters around the world, and searched for seasonal patterns as common timing and amplitude of monthly variability. The data revealed a broad continuum of seasonal patterns, with large variability across and within ecosystems. This contrasts with annual cycles of terrestrial and oceanic primary producers for which seasonal fluctuations are recurrent and synchronous over large geographic regions. This finding bears on two fundamental ecological questions: (1) how do estuarine and coastal consumers adapt to an irregular and unpredictable food supply, and (2) how can we extract signals of climate change from phytoplankton observations in coastal ecosystems where local‐scale processes can mask responses to changing climate?  相似文献   

4.
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom‐up processes, the top‐down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi‐decadal Oscillation (AMO). While previous studies have hypothesized that climate‐driven warming would facilitate seasonal stratification of surface waters and long‐term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom‐up (NAO control) and top‐down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.  相似文献   

5.
1. Pigment analysis by high‐performance liquid chromatography (HPLC) combined with data analysis using the CHEMTAX program has proven to be a fast and precise method for determining the abundance of phytoplankton groups in marine environments. To determine whether CHEMTAX is applicable also to freshwater phytoplankton, 20 different species of freshwater algae were cultured and their pigment/chlorophyll a (Chl a) ratios determined for exponential growth at three different light intensities and for stationary growth at one light intensity. 2. The different treatments had a relatively insignificant impact on the absolute values of the diagnostic pigment/Chl a ratios, with the exception of cyanobacteria and cryptophytes for which the zeaxanthin/Chl a and alloxanthin/Chl a ratios varied considerably. 3. The pigment ratios were tested on samples collected in six different eutrophic Danish lakes during two summer periods using the CHEMTAX program to calculate the biomass of the phytoplankton groups as Chl a. The CHEMTAX‐derived seasonal changes in Chl a biomass corresponded well with the volume of the microscopically determined phytoplankton groups. More phytoplankton groups were detected by the pigment method than by the microscopic method. 4. Applying the pigment ratios developed in this study, the pigment method can be used to determine the abundance of the individual phytoplankton groups, which are useful as biological water quality indicators when determining the ecological status of freshwater lakes.  相似文献   

6.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.  相似文献   

7.
The seasonal development and decline of phytoplankton was investigated in the eastern Weddell Sea during summer and fall 1991. During the first half of the study (15 Jan–13 Feb) in an area off Vestkapp, favourable irradiance/mixing regimes initiated net phytoplankton growth in ice-free waters on the shelf and in stretches of open water over the partially ice-covered deep ocean. Chi a concentrations in the upper water column were moderate (0.2–0.8 g l–1), but significantly above winter values. Later in the season (16 Feb–11 March), a phytoplankton bloom with surface Chl a concentrations ranging from 1.6–2.3 g l–1 was encountered in an area further to the east. We suggest that the upper water column must have been stratified in this region for time scales of weeks to faciliate bloom development. Bacterial biomass and productivity generally paralleled the seasonal development of the phytoplankton. Nitrate concentrations in the upper mixed layer were substantially lower than would be expected from the existing phytoplankton standing stock, suggesting that heterotrophic consumption of organic matter by bacteria and zooplankton removed a large fraction of the primary production. The shallow seasonal pycnocline was eventually eroded by the passage of a storm, resulting in a homogeneous distribution of phytoplankton biomass over the entire water column, followed by sedimentation and deposition of phytodetritus on the sea floor. After the storm induced destratification, bacterial productivity was particularly high, amounting to more than half of the primary production (range: 10%–120%) in the upper water column. Subsequently, phytoplankton biomass in the upper water column decreased to values <1 g Chl a l–1. The combination of low incident irradiances and incessant deep mixing prevented the phytoplankton biomass to increase again. During the last week of the investigation, extensive new-ice formation was observed. A major fraction of the residual surface plankton was incorporated into new sea ice, thus terminating the pelagic growth season of the phytoplankton in the eastern Weddell Sea.  相似文献   

8.
9.
The Arctic Ocean and its surrounding shelf seas are warming much faster than the global average, which potentially opens up new distribution areas for temperate‐origin marine phytoplankton. Using over three decades of continuous satellite observations, we show that increased inflow and temperature of Atlantic waters in the Barents Sea resulted in a striking poleward shift in the distribution of blooms of Emiliania huxleyi, a marine calcifying phytoplankton species. This species' blooms are typically associated with temperate waters and have expanded north to 76°N, five degrees further north of its first bloom occurrence in 1989. E. huxleyi's blooms keep pace with the changing climate of the Barents Sea, namely ocean warming and shifts in the position of the Polar Front, resulting in an exceptionally rapid range shift compared to what is generally detected in the marine realm. We propose that as the Eurasian Basin of the Arctic Ocean further atlantifies and ocean temperatures continue to rise, E. huxleyi and other temperate‐origin phytoplankton could well become resident bloom formers in the Arctic Ocean.  相似文献   

10.
SUMMARY 1. An examination is made of the relative seasonal timing of the postwinter increase of phytoplankton and zooplankton populations in four English lake basins. It centres upon weekly sampling over 20 years and rough counts of larger Crustacea, as copepods and cladocerans, from filtered samples that were used for chlorophyll a (Chl) estimation. 2. Typically, a spring maximum of phytoplankton, dominated by diatoms and earlier in the shallower lakes, is accompanied or followed by a maximum of copepods and then one of cladocerans dominated by the Daphnia hyalina–galeata complex. Regarding timing, the maximum of copepods has no apparent relation with phytoplankton abundance (Chl). The maximum of cladocerans appears to be largely independent of variation in the phytoplankton maximum, but is generally associated with a minimum in Chl. Evidence for some direct causality in this inverse correlation after the spring phytoplankton maximum is best displayed by the shallow Esthwaite Water in which the peaks of Chl and cladocerans are separated further than in the deep Windermere basins where phytoplankton growth is delayed. In Esthwaite Water, and possibly often in Windermere, a principal minimum in Chl is ascribable to grazing by Daphnia. 3. The typical inverse relationship of Chl and cladocerans is lost in some years when relatively inedible large phytoplankters (e.g. colonial chrysomonads, filamentous cyanophytes) are abundant and Chl minima are less pronounced, although maxima of cladocerans still occur. Conversely, available edible phytoplankters include various small forms grouped as μ‐algae and Cryptomonas spp.; their probable depletions by Daphnia appear to be sequential and may limit the latter's maxima, whose inception is temperature‐dependent. 4. The spring–summer maxima of cladocerans and minima of Chl are generally coincident with a main seasonal maximum of Secchi disc transparency and light penetration – to which removal of non‐phytoplankton particles by filtering cladocerans may contribute.  相似文献   

11.
A new approach is described to identify the dominant process (physical versus biological) in a pelagic marine ecosystem, from simple biological oceanographic field variables. The approach is based on quantification of the matching (M) between phytoplankton production (P) and losses, from field estimates of chlorophyll a(Chl) and P. Coefficient M is estimated for a wide range of oceanic and coastal environments and of trophic characteristics, using dat from the literature. Results show that M characterizes the dominance of physical versus biological processes in pelagic systems. The coefficient may be especially useful as a means for extracting process information on pelagic marine ecosystems from large data sets of Chl and P, e.g. recorded by moored instruments or provided by satellite images of ocean colour.   相似文献   

12.
We present data from a long time-series study to describe the factors that control phytoplankton population densities and biomass in the coastal waters of Oman. Surface temperature, salinity, nutrients, dissolved oxygen, chlorophyll a (Chl a), and phytoplankton and zooplankton abundance of sea water were measured as far as possible from February 2004 through February 2006, at two stations along the southern coast of the Gulf of Oman. The highest concentrations of Chl a (3 mg m−3) were recorded during the southwest monsoon (SWM) when upwelling is active along the coast of Oman. However, results from our study reveal that the timing and the amplitude of the seasonal peak of Chl a exhibited interannual variability, which might be attributed to interannual differences in the seasonal cycles of nutrients caused either by coastal upwelling or by cyclonic eddy activity. Monthly variability of SST and concentrations of dissolved nitrate, nitrite, phosphate, and silicate together explained about 90% of the seasonal changes of Chl a in the coastal ecosystem of the Gulf of Oman. Phytoplankton communities of the coastal waters of Oman were dominated by diatoms for most part of the year, but for a short period in summer, dinoflagellates were dominant.  相似文献   

13.
The new satellite ocean color sensors offer a means of detecting and monitoring algal blooms in the ocean and coastal zone. Beginning with SeaWiFS (Sea Wide Field-of-view Sensor) in September 1997, these sensors provide coverage every 1 to 2 days with 1-km pixel view at nadir. Atmospheric correction algorithms designed for the coastal zone combined with regional chlorophyll algorithms can provide good and reproducible estimates of chlorophyll, providing the means of monitoring various algal blooms. Harmful algal blooms (HABs) caused by Karenia brevis in the Gulf of Mexico are particularly amenable to remote observation. The Gulf of Mexico has relatively clear water and K. brevis, in bloom conditions, tends to produce a major portion of the phytoplankton biomass. A monitoring program has begun in the Gulf of Mexico that integrates field data from state monitoring programs with satellite imagery, providing an improved capability for the monitoring of K. brevis blooms.  相似文献   

14.
The impact of climate change on the marine food web is highly uncertain. Nonetheless, there is growing consensus that global marine primary production will decline in response to future climate change, largely due to increased stratification reducing the supply of nutrients to the upper ocean. Evidence to date suggests a potential amplification of this response throughout the trophic food web, with more dramatic responses at higher trophic levels. Here we show that trophic amplification of marine biomass declines is a consistent feature of the Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth System Models, across different scenarios of future climate change. Under the business‐as‐usual Representative Concentration Pathway 8.5 (RCP8.5) global mean phytoplankton biomass is projected to decline by 6.1% ± 2.5% over the twenty‐first century, while zooplankton biomass declines by 13.6% ± 3.0%. All models project greater relative declines in zooplankton than phytoplankton, with annual zooplankton biomass anomalies 2.24 ± 1.03 times those of phytoplankton. The low latitude oceans drive the projected trophic amplification of biomass declines, with models exhibiting variable trophic interactions in the mid‐to‐high latitudes and similar relative changes in phytoplankton and zooplankton biomass. Under the assumption that zooplankton biomass is prey limited, an analytical explanation of the trophic amplification that occurs in the low latitudes can be derived from generic plankton differential equations. Using an ocean biogeochemical model, we show that the inclusion of variable C:N:P phytoplankton stoichiometry can substantially increase the trophic amplification of biomass declines in low latitude regions. This additional trophic amplification is driven by enhanced nutrient limitation decreasing phytoplankton N and P content relative to C, hence reducing zooplankton growth efficiency. Given that most current Earth System Models assume that phytoplankton C:N:P stoichiometry is constant, such models are likely to underestimate the extent of negative trophic amplification under projected climate change.  相似文献   

15.
Phytoplankton growth and productivity relies on light, multiple nutrients and temperature. These combined factors constitute the 'integrated growth environment'. Since their emergence in the Archaean ocean, phytoplankton have experienced dramatic shifts in their integrated growth environment and, in response, evolved diverse mechanisms to maximize growth by optimizing the allocation of photosynthetic resources (ATP and NADPH) among all cellular processes. Consequently, co-limitation has become an omnipresent condition in the global ocean. Here we focus on evolved phytoplankton populations of the contemporary ocean and the varied energetic pathways they employ to solve the optimization problem of resource supply and demand. Central to this discussion is the allocation of reductant formed through photosynthesis, which we propose has the following three primary fates: carbon fixation, direct use and ATP generation. Investment of reductant among these three sinks is tied to cell cycle events, differentially influenced by specific forms of nutrient stress, and a strong determinant of relationships between light-harvesting (pigment), photosynthetic electron transport and carbon fixation. Global implications of optimization are illustrated by deconvolving trends in the 10-year global satellite chlorophyll record into contributions from biomass and physiology, thereby providing a unique perspective on the dynamic nature of surface phytoplankton populations and their link to climate.  相似文献   

16.
In 1989–2005 the qualitative composition and seasonal and inter-annual dynamics of the total biomass of phytoplankton, chlorophyll a content, hydrological, and hydrochemical parameters were studied in the Russian zone of the Vistula Lagoon in the Baltic Sea. The results of these observations were compared to the data obtained in the 1950s and 1970s. The structural reorganization of phytoplankton was revealed, testifying to the negative changes in the ecosystem under conditions of anthropogenic pollution and eutrophication, climate warming, and increasing salinity.  相似文献   

17.
Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate‐driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll‐a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind‐driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll‐a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll‐a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1–3 years, by 3‐ to 19‐fold increased abundances of five ocean‐produced demersal fish and crustaceans and 2.5‐fold increase of summer chlorophyll‐a in the Bay. These changes reflect a slow biological process of estuary–ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate‐mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing patterns of upwelling timing and intensity as the planet continues to warm.  相似文献   

18.
Y. Z. Yacobi 《Freshwater Biology》2003,48(10):1850-1858
1. Pigment composition was measured in natural phytoplankton samples from Lake Kinneret, Israel. From March through June 1998, the dinoflagellate Peridinium gatunense Nygaard mostly contributed more than 95% of the algal biomass. Peak densities were found in April, close to the water surface, with >109 cells m?3, chlorophyll (Chl) a concentration of 380 mg m?3 and areal Chl‐a density of >1300 mg m?2. 2. Cellular concentrations of Chl‐a changed between 201 and 282 pg cell?1, but did not show a defined temporal fluctuation. 3. The mass ratio of Chl‐c to Chl‐a changed from March to June between 0.16 and 0.22, and the peridinin to Chl‐a ratio changed from 0.25 to 0.41. Neither ratio showed a clear pattern of seasonal change. Conversely, there was a progressive increase in diadinoxanthin and β‐carotene ratios to Chl‐a through the season, parallel to the increase in photon flux impinging upon the lake surface. The diadinoxanthin to Chl‐a ratio changed from 0.11 to 0.28 and the β‐carotene to Chl‐a ratio varied from 0.03 to 0.08 from March through June. 4. Diatoxanthin was not detected in natural samples. However, it was present in experiments with P. gatunense cultures, when concentration of diatoxanthin increased rapidly, concurrent with a decrease in diadinoxanthin and β‐carotene concentrations, while Chl‐c and peridinin ratios to Chl‐a were almost stable with photon flux increase. 5. The seasonal variation in cellular pigmentation of P. gatunense in Lake Kinneret suggests that accumulation of photoprotective pigments is essential for optimisation of photosynthetic activity of this large dinoflagellate.  相似文献   

19.
Phytoplankton growth is controlled by multiple environmental drivers, which are all modified by climate change. While numerous experimental studies identify interactive effects between drivers, large-scale ocean biogeochemistry models mostly account for growth responses to each driver separately and leave the results of these experimental multiple-driver studies largely unused. Here, we amend phytoplankton growth functions in a biogeochemical model by dual-driver interactions (CO2 and temperature, CO2 and light), based on data of a published meta-analysis on multiple-driver laboratory experiments. The effect of this parametrization on phytoplankton biomass and community composition is tested using present-day and future high-emission (SSP5-8.5) climate forcing. While the projected decrease in future total global phytoplankton biomass in simulations with driver interactions is similar to that in control simulations without driver interactions (5%–6%), interactive driver effects are group-specific. Globally, diatom biomass decreases more with interactive effects compared with the control simulation (−8.1% with interactions vs. no change without interactions). Small-phytoplankton biomass, by contrast, decreases less with on-going climate change when the model accounts for driver interactions (−5.0% vs. −9.0%). The response of global coccolithophore biomass to future climate conditions is even reversed when interactions are considered (+33.2% instead of −10.8%). Regionally, the largest difference in the future phytoplankton community composition between the simulations with and without driver interactions is detected in the Southern Ocean, where diatom biomass decreases (−7.5%) instead of increases (+14.5%), raising the share of small phytoplankton and coccolithophores of total phytoplankton biomass. Hence, interactive effects impact the phytoplankton community structure and related biogeochemical fluxes in a future ocean. Our approach is a first step to integrate the mechanistic understanding of interacting driver effects on phytoplankton growth gained by numerous laboratory experiments into a global ocean biogeochemistry model, aiming toward more realistic future projections of phytoplankton biomass and community composition.  相似文献   

20.
Migrations are often influenced by seasonal environmental gradients that are increasingly being altered by climate change. The consequences of rapid changes in Arctic sea ice have the potential to affect migrations of a number of marine species whose timing is temporally matched to seasonal sea ice cover. This topic has not been investigated for Pacific Arctic beluga whales (Delphinapterus leucas) that follow matrilineally maintained autumn migrations in the waters around Alaska and Russia. For the sympatric Eastern Chukchi Sea (‘Chukchi’) and Eastern Beaufort Sea (‘Beaufort’) beluga populations, we examined changes in autumn migration timing as related to delayed regional sea ice freeze‐up since the 1990s, using two independent data sources (satellite telemetry data and passive acoustics) for both populations. We compared dates of migration between ‘early’ (1993–2002) and ‘late’ (2004–2012) tagging periods. During the late tagging period, Chukchi belugas had significantly delayed migrations (by 2 to >4 weeks, depending on location) from the Beaufort and Chukchi seas. Spatial analyses also revealed that departure from Beaufort Sea foraging regions by Chukchi whales was postponed in the late period. Chukchi beluga autumn migration timing occurred significantly later as regional sea ice freeze‐up timing became later in the Beaufort, Chukchi, and Bering seas. In contrast, Beaufort belugas did not shift migration timing between periods, nor was migration timing related to freeze‐up timing, other than for southward migration at the Bering Strait. Passive acoustic data from 2008 to 2014 provided independent and supplementary support for delayed migration from the Beaufort Sea (4 day yr?1) by Chukchi belugas. Here, we report the first phenological study examining beluga whale migrations within the context of their rapidly transforming Pacific Arctic ecosystem, suggesting flexible responses that may enable their persistence yet also complicate predictions of how belugas may fare in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号