首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cholangiocarcinoma (CCA) associated with liver fluke infection involves inflammatory and immune processes; however, whether these involve the proinflammatory cytokine IL‐17A and proliferative cytokine IL‐22 remains unclear. Here, numbers of IL‐22‐ and IL‐17A‐producing Th cells and cytokine concentrations in 30 patients with CCA and long‐term liver fluke infection, 40 patients with liver‐fluke infection but not CCA, and 16 healthy controls were compared. Analyses were performed using immunohistochemistry, flow cytometry, ELISA and RT‐PCR. Immunohistochemical staining showed weaker expression of IL‐22 and IL‐17A in patients with CCA with than in those without liver fluke infection (P < 0.01). Flow cytometry revealed significantly greater median proportions of IL‐22‐producing T helper cells in patients with CCA (2.2%) than in those without it (0.69%) or controls (0.4%, P < 0.001). Similar results were obtained for IL‐17A‐producing T helper cells. ELISA revealed plasma concentrations of IL‐22 were 1.3‐fold higher in patients with CCA than in those without it and 4.6‐fold higher than in controls (P < 0.001). Plasma concentrations of IL‐17A were 2.5‐fold higher in patients with CCA than in those without it, and 21‐fold higher than in controls (P < 0.001). Amounts of IL‐22 and IL‐17A mRNAs in blood were significantly higher in patients with CCA than in the other two groups. Proportions of CD4+CD45RO+ T cells producing IL‐22 correlated with proportions producing IL‐17A (r = 0.759; P < 0.001), and plasma concentrations of IL‐22 correlated with those of IL‐17A (r = 0.726; P < 0.001). These results suggest that both IL‐17A and IL‐22 affect development of CCA related to liver fluke infection.
  相似文献   

3.
4.
5.
6.
7.
8.
The metabolism of the illegal growth promoter ethylestrenol (EES) was evaluated in bovine liver cells and subcellular fractions of bovine liver preparations. Incubations with bovine microsomal preparations revealed that EES is extensively biotransformed into norethandrolone (NE), another illegal growth promoter. Furthermore, incubations of monolayer cultures of hepatocytes with NE indicated that NE itself is rapidly reduced to 17α-ethyl-5β-estrane-3α,17β-diol (EED). In vivo tests confirmed that, after administration of either EES or NE, EED is excreted as a major metabolite. Therefore, it was concluded that, both in urine and faeces samples, EED can be used as a biological marker for the illegal use of EES and/or NE. Moreover, by monitoring EED in urine or faeces samples, the detection period after NE administration is significantly prolonged. These findings were further confirmed by three cases of norethandrolone abuse in a routine screening program for forbidden growth promoters.  相似文献   

9.
10.
摘要 目的:探讨外周血辅助T细胞(Th)1/Th2比值、白介素(IL)-23/Th17轴与中重度斑块状银屑病(PP)患者颈动脉粥样硬化和临床疗效的关系。方法:选取2021年1月~2022年1月徐州医科大学附属医院收治的97例中重度PP患者为中重度PP组,根据颈动脉内中膜厚度(CIMT)分为增厚组39例和正常组58例,根据甲氨蝶呤(MTX)治疗是否应答有效分为无应答组和应答组,另选取同期50例体检健康志愿者为对照组。采用流式细胞术检测外周血Th1、Th2百分比和Th1/Th2比值,酶联免疫吸附法检测外周血IL-23、IL-17A水平。采用Pearson相关性分析中重度PP患者外周血Th1、Th2、Th1/Th2比值和IL-23/Th17轴相关因子与CIMT的相关性,多因素Logistic回归分析中重度PP患者MTX治疗无应答的影响因素。结果:与对照组比较,中重度PP组外周血Th1、Th1/Th2比值、IL-23和IL-17A水平升高,Th2比例降低(P均<0.001)。97例中重度PP患者颈动脉粥样硬化发生率为40.21%(39/97)。与正常组比较,增厚组外周血Th1、Th1/Th2比值、IL-23和IL-17A水平升高,Th2比例降低(P均<0.001)。Pearson相关性分析显示,中重度PP患者外周血Th1、Th1/Th2比值、IL-23、IL-17A与CIMT呈正相关,Th2与CIMT呈负相关(r=0.695、0.706、0.688、0.650、-0.639,P均<0.001)。97例中重度PP患者MTX治疗无应答率为21.65%(21/97)。多因素Logistic回归分析显示,重度PP和Th1、Th1/Th2比值、IL-23、IL-17A升高为中重度PP患者MTX治疗无应答的独立危险因素,Th2升高为独立保护因素(P均<0.05)。结论:中重度PP患者外周血Th1/Th2比值和IL-23/Th17轴相关因子升高,与颈动脉粥样硬化和MTX治疗无应答有关,可能成为中重度PP患者颈动脉粥样硬化和临床疗效评估指标。  相似文献   

11.
12.
Interleukin (IL)-12 and IL-23 are composite cytokines consisting of p35/p40 and p19/p40, respectively, which signal via the common IL-12 receptor β1 (IL-12Rβ1) and the cytokine-specific receptors IL-12Rβ2 and IL-23R. Previous data showed that the p40 component interacts with IL-12Rβ1, whereas p19 and p35 subunits solely bind to IL-23R and IL-12Rβ2, resulting in tetrameric signaling complexes. In the absence of p19 and p35, p40 forms homodimers and may induce signaling via IL-12Rβ1 homodimers. The critical amino acids of p19 and p35 required for binding to IL-23R and IL-12Rβ2 are known, and two regions of p40 critical for binding to IL-12Rβ1 have recently been identified. In order to characterize the involvement of the N-terminal region of p40 in binding to IL-12Rβ1, we generated deletion variants of the p40-p19 fusion cytokine. We found that an N-terminal deletion variant missing amino acids M23 to P39 failed to induce IL-23-dependent signaling and did not bind to IL-12Rβ1, whereas binding to IL-23R was maintained. Amino acid replacements showed that p40W37K largely abolished IL-23-induced signal transduction and binding to IL-12Rβ1, but not binding to IL-23R. Combining p40W37K with D36K and T38K mutations eliminated the biological activity of IL-23. Finally, homodimeric p40D36K/W37K/T38K did not interact with IL-12Rβ1, indicating binding of homodimeric p40 to IL-12Rβ1 is comparable to the interaction of IL-23/IL-12 and IL-12Rβ1. In summary, we have defined D36, W37, and T38 as hotspot amino acids for the interaction of IL-12/IL-23 p40 with IL-12Rβ1. Structural insights into cytokine–cytokine receptor binding are important to develop novel therapeutic strategies.  相似文献   

13.
14.
《Autophagy》2013,9(3):453-467
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   

15.
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   

16.
The opioid receptor mu1 (OPRM1) mediates the action of morphine. Although genetic background plays an important role in the susceptibility toward abuse of drugs as evident from familial, adoption and twin studies, association of specific single‐nucleotide polymorphisms of OPRM1 gene with narcotic addiction is to be established. Here, we demonstrate the involvement of A118G polymorphism of exon1 of human OPRM1 gene (hOPRM1), with heroin and alcohol addiction, in a population in eastern India. Statistical analysis exhibited a significant association of G allele with both heroin and alcohol addiction with a risk factor of Ptrend < 0.05. The functional significance of G allele in A118G single‐nucleotide polymorphisms was evaluated by studying the regulation of protein kinase A (PKA), pCREB, and pERK1/2 by morphine in Neuro 2A cells, stably transfected with either wild type or A118G mutant hOPRM1. Unlike acute morphine treatment, both chronic morphine exposure and withdrawal precipitated by naloxone were differentially regulated by A118 and G118 receptor isoforms when both PKA and pERK1/2 activities were compared. Results suggest that the association of A118G polymorphism to heroin and alcohol addiction may be because of the altered regulation of PKA and pERK1/2 during opioid and alcohol exposures.  相似文献   

17.
18.
19.
Rat1 fibroblasts stably transfected with the rat angiotensin II (AngII) AT1a and bradykinin (BK) B2 receptor cDNAs gained the ability to bind Ang II and BK. Wild-type Rat1 cells bound neither ligand. Exposure to either effector led to characteristic Galphai and Galphaq signal cascades, the release of arachidonic acid (ARA), and the intracellular accumulation of inositol phosphates (IP). Microarray analyses in response to BK or AngII showed that both receptors markedly induce the CCN family genes, CTGF (CCN2) and Cyr61 (CCN1), as well as the vasculature-related genes, Cnn1 and Egr1. Real time PCR confirmed the increased expression of connective tissue growth factor (CTGF) mRNA. Combined sequence-based analysis of gene promoter regions with statistical prevalence analyses identified CREB, SRF, and ATF-1, downstream targets of ERK, and JNK, as prominent products of genes that are regulated by ligand binding to the BK or AngII receptors. The binding of AngII or BK markedly stimulated the phosphorylation and thus the activation of ERK2, JNK, and p38MAPK. A BKB2R and an AT1aR chimera which displayed only negligible G-protein-related signaling were constructed. Both mutant receptors continued to activate these kinases and stimulate CTGF expression. Inhibitors of ERK1/2 and JNK but not p38MAPK inhibited the BK- and AngII-stimulated expression of CTGF in cells expressing either the WT or mutant receptors, illustrating that ERK and JNK participate in the control of CTGF expression in a manner that appears to be independent of G-protein. Conversely, addition of BK or AngII to the cell line expressing WT AT1aR and BKB2R downregulated the expression of collagen alpha1(I) (COL1A1) mRNA. However, these effectors did not have this effect in cells expressing the mutant receptors. Thus, a robust G-protein related response is necessary for BK or AngII to affect COL1A1 expression.  相似文献   

20.
It is widely accepted that the incidence of chromosomal aberration is 10–15.2% in the azoospermic male; however, the exact genetic damages are currently unknown for more than 40% of azoospermia. To elucidate the causative gene defects, we used the next generation sequencing (NGS) to map the breakpoints of a chromosome insertion from an azoospermic male who carries a balanced, maternally inherited karyotype 46, XY, inv ins (18,7) (q22.1; q36.2q21.11). The analysis revealed that the breakage in chromosome 7 disrupts two genes, dipeptidyl aminopeptidase-like protein 6 (DPP6) and contactin-associated protein-like 2 (CACNA2D1), the former participates in regulation of voltage-gated potassium channels, and the latter is one of the components in voltage-gated calcium channels. The deletion and duplication were not identified equal or beyond 100 kb, but 4 homologous DNA elements were verified proximal to the breakpoints. One of the proband's sisters inherited the same aberrant karyotype and experienced recurrent miscarriages and consecutive fetus death, while in contrast, another sister with a normal karyotype experienced normal labor and gave birth to healthy babies. The insertional translocation is confirmed with FISH and the Y-chromosome microdeletions were excluded by genetic testing. This is the first report describing chromosome insertion inv ins (18,7) and attributes DPP6 and CACNA2D1 to azoospermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号