首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using phylogeny-based methods to identify evolutionary transitions has become an integral part of evolutionary biology. Here, we demonstrate the potential for these methods to give statistically well-supported but misleading inferences about character evolution. We also show how inferences of character evolution can be informed using GIS-based methods to reconstruct ancestral environmental regimes. We reconstruct a phylogeny for marsupial frogs (Hemiphractidae) using nuclear and mitochondrial DNA sequences and estimate patterns of life-history evolution across the resulting tree. We find that Gastrotheca species with complex life cycles (i.e., egg, tadpole, and adult stages) are phylogenetically nested among species and genera with direct development (i.e., egg and adult stages only). Assuming a single rate for gains and losses in likelihood reconstructions, there is strong statistical support for the hypothesis that the tadpole stage was lost early in the phylogeny but reappeared within Gastrotheca. Assuming different rates of gain and loss, the model with significantly higher statistical support, the tadpole stage seems to have been lost multiple times but never regained. Given that both hypotheses cannot be correct, at least one reconstruction model must be giving well-supported but misleading results. Several lines of evidence (including GIS-based reconstructions of the ancestral climatic regime) suggest that the former hypothesis is correct, and that the tadpole stage has evolved from direct development within Gastrotheca, the only known case of such a reversal in frogs.  相似文献   

2.
  总被引:7,自引:0,他引:7  
The transition from aquatic to terrestrial eggs is a key evolutionary change that has allowed vertebrates to successfully colonize and exploit the land. Although most amphibians retain the primitive biphasic life cycle (eggs deposited in water that hatch into free-living aquatic larvae), direct development of terrestrial eggs has evolved repeatedly and may have been critical to the evolutionary success of several amphibian groups. We provide the first conclusive evidence for evolutionary reversal of direct development in vertebrates. The family Plethodontidae (lungless salamanders) contains the majority of salamander species, including major radiations of direct developers. We reconstruct the higher level phylogenetic relationships of plethodontid salamanders using molecular and morphological data and use this phylogeny to examine the evolution of direct development. We show that the predominantly biphasic desmognathines, previously considered the sister group of other plethodontids, are nested inside a group of direct-developing species (Plethodontini) and have re-evolved the aquatic larval stage. Rather than being an evolutionary dead end, the reversal from direct developing to biphasic life history may have helped communities in eastern North America to achieve the highest local diversity of salamander species in the world.  相似文献   

3.
    
Differences in species richness between regions are ultimately explained by patterns of speciation, extinction, and biogeographic dispersal. Yet, few studies have considered the role of all three processes in generating the high biodiversity of tropical regions. A recent study of a speciose group of predominately New World frogs (Hylidae) showed that their low diversity in temperate regions was associated with relatively recent colonization of these regions, rather than latitudinal differences in diversification rates (rates of speciation–extinction). Here, we perform parallel analyses on the most species-rich group of Old World frogs (Ranidae; ∼1300 species) to determine if similar processes drive the latitudinal diversity gradient. We estimate a time-calibrated phylogeny for 390 ranid species and use this phylogeny to analyze patterns of biogeography and diversification rates. As in hylids, we find a strong relationship between the timing of colonization of each region and its current diversity, with recent colonization of temperate regions from tropical regions. Diversification rates are similar in tropical and temperate clades, suggesting that neither accelerated tropical speciation rates nor greater temperate extinction rates explain high tropical diversity in this group. Instead, these results show the importance of historical biogeography in explaining high species richness in both the New World and Old World tropics.  相似文献   

4.
Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a \"hump-shaped\" pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This \"time-for-speciation\" effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome.  相似文献   

5.
  总被引:3,自引:0,他引:3  
The goal of this study was to investigate the extent of convergence in four basic life history and socio-ecological traits among the primates of Africa, Asia, South America and Madagascar. The convergence hypothesis predicts that similar abiotic conditions should result in similar adaptations in independent taxa. Because primates offer a unique opportunity among mammals to examine adaptations of independent groups to tropical environments, we collected information on body mass, activity pattern, diet and group size from all genera for quantitative tests of this hypothesis. We revealed a number of qualitative and quantitative differences among the four primate groups, indicating a lack of convergence in these basic aspects of life history and socio-ecology. Our analyses demonstrated that New World primates are on average significantly smaller than primates in other regions and characterized by a lack of species larger than about 10 kg. Madagascar harbours significantly more nocturnal species than the other regions and is home to all but one of the primates with irregular bursts of activity. Asia is the only region with strictly faunivorous primates, but lacks primarily gummivorous ones. The Neotropics are characterized by the absence of primarily folivorous primates. Solitary species are not represented in the New World, whereas solitary and pair-living species make up the majority of Malagasy primates. Lemurs live in significantly smaller groups than other primates, even after controlling for differences in body size. The lack of convergence among the major primate groups is neither primarily due to phylogenetic constraints as a result of founder effects, nor can it be sufficiently explained as a passive consequence of body size differences. However, because the role of adaptive forces, such as interspecific competition, predation or phenology in shaping the observed differences is largely unexplored, we conclude that it is premature to discard the convergence hypothesis without further tests.  相似文献   

6.
    
Understanding phenotypic diversity requires not only identification of selective factors that favor origins of derived states, but also factors that favor retention of primitive states. Anurans (frogs and toads) exhibit a remarkable diversity of reproductive modes that is unique among terrestrial vertebrates. Here, we analyze the evolution of these modes, using comparative methods on a phylogeny and matched life‐history database of 720 species, including most families and modes. As expected, modes with terrestrial eggs and aquatic larvae often precede direct development (terrestrial egg, no tadpole stage), but surprisingly, direct development evolves directly from aquatic breeding nearly as often. Modes with primitive exotrophic larvae (feeding outside the egg) frequently give rise to direct developers, whereas those with nonfeeding larvae (endotrophic) do not. Similarly, modes with eggs and larvae placed in locations protected from aquatic predators evolve frequently but rarely give rise to direct developers. Thus, frogs frequently bypass many seemingly intermediate stages in the evolution of direct development. We also find significant associations between terrestrial reproduction and reduced clutch size, larger egg size, reduced adult size, parental care, and occurrence in wetter and warmer regions. These associations may help explain the widespread retention of aquatic eggs and larvae, and the overall diversity of anuran reproductive modes.  相似文献   

7.
The rate of climatic‐niche evolution is important to many research areas in ecology, evolution, and conservation biology, including responses of species to global climate change, spread of invasive species, speciation, biogeography, and patterns of species richness. Previous studies have implied that clades with higher rates of climatic‐niche evolution among species should have species with narrower niche breadths, but there is also evidence suggesting the opposite pattern. However, the relationships between rate and breadth have not been explicitly analyzed. Here, we examine the relationships between the rate of climatic‐niche evolution and climatic‐niche breadth using phylogenetic and climatic data for 250 species in the salamander family Plethodontidae, a group showing considerable variation in both rates of climatic‐niche evolution and climatic‐niche breadths. Contrary to some expectations, we find no general relationship between climatic‐niche breadth and the rate of climatic‐niche evolution. Climatic‐niche breadths for some ecologically important climatic variables considered separately (temperature seasonality and annual precipitation) do show significant relationships with the rate of climatic‐niche evolution, but rates are faster in clades in which species have broader (not narrower) niche breadths. In summary, our results show that narrower niche breadths are not necessarily associated with faster rates of niche evolution.  相似文献   

8.
    
In recent decades, the field of historical biogeography has become increasingly divorced from evolutionary biology, ecology, and studies of species richness. In this paper, we explore the evolutionary causes of patterns of biogeography and species richness in Northern Hemisphere treefrogs, combining phylogenetics, ancestral area reconstruction, molecular dating methods, and ecological niche modeling. We reconstructed phylogenetic relationships among 58 hylid taxa using data from two mitochondrial genes (12S, ND1) and two nuclear genes (POMC, c-myc). We find that parallel patterns of species richness have developed in Europe, Asia, and in two separate clades of North American hylids, with the highest richness at midtemperate latitudes (30-35 degrees) on each continent. This pattern is surprising given that hylids overall show higher species richness in the New World tropics and given many standard ecological explanations for the latitudinal diversity gradient (e.g., energy, productivity, mid-domain effect). The replicate pattern in Holarctic hylids seems to reflect specialized tolerance for temperate climate regimes or possibly the effects of competition. The results also suggest that long-range dispersal between continental regions with similar climatic regimes may be easier than dispersal between geographically adjacent regions with different climatic regimes. Our results show the importance of ecology and evolution to large-scale biogeography and the importance of large-scale biogeography to understanding patterns of species richness.  相似文献   

9.
10.
    
We propose a combined approach to explore the model transferability and the effect of climate change on habitat suitability.  相似文献   

11.
Transcontinental dispersals by organisms usually represent improbable events that constitute a major challenge for biogeographers. By integrating molecular phylogeny, historical biogeography and palaeoecology, we test a bold hypothesis proposed by Vladimir Nabokov regarding the origin of Neotropical Polyommatus blue butterflies, and show that Beringia has served as a biological corridor for the dispersal of these insects from Asia into the New World. We present a novel method to estimate ancestral temperature tolerances using distribution range limits of extant organisms, and find that climatic conditions in Beringia acted as a decisive filter in determining which taxa crossed into the New World during five separate invasions over the past 11 Myr. Our results reveal a marked effect of the Miocene-Pleistocene global cooling, and demonstrate that palaeoclimatic conditions left a strong signal on the ecology of present-day taxa in the New World. The phylogenetic conservatism in thermal tolerances that we have identified may permit the reconstruction of the palaeoecology of ancestral organisms, especially mobile taxa that can easily escape from hostile environments rather than adapt to them.  相似文献   

12.
13.
A major goal for ecology and evolution is to understand how abiotic and biotic factors shape patterns of biological diversity. Here, we show that variation in establishment success of nonnative frogs and toads is primarily explained by variation in introduction pathways and climatic similarity between the native range and introduction locality, with minor contributions from phylogeny, species ecology, and life history. This finding contrasts with recent evidence that particular species characteristics promote evolutionary range expansion and reduce the probability of extinction in native populations of amphibians, emphasizing how different mechanisms may shape species distributions on different temporal and spatial scales. We suggest that contemporary changes in the distribution of amphibians will be primarily determined by human-mediated extinctions and movement of species within climatic envelopes, and less by species-typical traits.  相似文献   

14.
Parthenogenesis often evolves in association with hybridization, but the associated ecological consequences are poorly understood. The Australian gecko Heteronotia binoei is unusual because triploid parthenogenesis evolved through reciprocal crosses between two sexual lineages, resulting in four possible cytonuclear genotypes. In this species complex, we compared the performance of these parthenogenetic genotypes with their sexual progenitors for a suite of physiological traits (metabolic rate, thermal tolerance, locomotor performance, and in vitro activity and gene sequence divergence of a cytonuclear metabolic pathway, cytochrome C oxidase). Mass‐specific metabolic rate scaled differently with body mass for parthenogens and sexuals, while heat tolerance provided the only evidence for cytonuclear incompatibility in hybrid parthenogens. The most prominent phenotypic effects were attributable to nuclear genome dosage. Overall, our results suggest that the hybrid/polyploidy origin of parthenogenetic H. binoei has had surprisingly few negative fitness consequences and may have produced a broader overall niche for the species.  相似文献   

15.
    
  相似文献   

16.
The Indo-Pacific region has arguably been the most important area for the formulation of theories about biogeography and speciation, but modern studies of the tempo, mode and magnitude of diversification across this region are scarce. We study the biogeographic history and characterize levels of diversification in the wide-ranging passerine bird Erythropitta erythrogaster using molecular, phylogeographic and population genetics methods, as well as morphometric and plumage analyses. Our results suggest that E. erythrogaster colonized the Indo-Pacific during the Pleistocene in an eastward direction following a stepping stone pathway, and that sea-level fluctuations during the Pleistocene may have promoted gene flow only locally. A molecular species delimitation test suggests that several allopatric island populations of E. erythrogaster may be regarded as species. Most of these putative new species are further characterized by diagnostic differences in plumage. Our study reconfirms the E. erythrogaster complex as a ‘great speciator’: it represents a complex of up to 17 allopatrically distributed, reciprocally monophyletic and/or morphologically diagnosable species that originated during the Pleistocene. Our results support the view that observed latitudinal gradients of genetic divergence among avian sister species may have been affected by incomplete knowledge of taxonomic limits in tropical bird species.  相似文献   

17.
We conducted laboratory experiments with kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, to develop a conceptual model of early behavior. We daily observed embryos (first life phase after hatching) and larvae (period initiating exogenous feeding) to day-30 (late larvae) for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Day-0 embryos of both species strongly preferred bright, open habitat and initiated a strong, downstream migration that lasted 4 days (3 day peak) for kaluga and 3 days (2 day peak) for Amur sturgeon. Kaluga migrants swam far above the bottom (150cm) on only 1 day and moved day and night; Amur sturgeon migrants swam far above the bottom (median 130cm) during 3 days and were more nocturnal than kaluga. Post-migrant embryos of both species moved day and night, but Amur sturgeon used dark, cover habitat and swam closer to the bottom than kaluga. The larva period of both species began on day 7 (cumulative temperature degree-days, 192.0 for kaluga and 171.5 for Amur sturgeon). Larvae of both species preferred open habitat. Kaluga larvae strongly preferred bright habitat, initially swam far above the bottom (median 50–105cm), and migrated downstream at night during days 10–16 (7-day migration). Amur sturgeon larvae strongly avoided illumination, had a mixed response to white substrate, swam 20–30cm above the bottom during most days, and during days 12–34 (most of the larva period) moved downstream mostly at night (23-day migration). The embryo–larva migration style of the two species likely shows convergence of non-related species for a common style in response to environmental selection in the Amur River. The embryo–larva migration style of Amur sturgeon is unique among Acipenser yet studied.  相似文献   

18.
    
Aim Nearly 150 years ago, T. H. Huxley modified Wallace’s Line, including the island of Palawan as a component of the Asian biogeographic realm and separating it from the oceanic Philippines. Although Huxley recognized some characteristics of a transition between the regions, Palawan has since been regarded primarily as a peripheral component of the Sunda Shelf. However, several recent phylogenetic studies of Southeast Asian lineages document populations on Palawan to be closely related to taxa from the oceanic Philippines, apparently contradicting the biogeographic association of Palawan with the Sunda Shelf. In the light of recent evidence, we evaluate taxonomic and phylogenetic data in an attempt to identify the origin(s) of Palawan’s terrestrial vertebrate fauna. Location The Sunda Shelf and the Philippines. Methods We review distributional and phylogenetic data for populations of terrestrial vertebrates from Palawan. Using taxonomic data, we compare the number of Palawan taxa (species and genera) shared with the Sunda Shelf and oceanic Philippines. Among widespread lineages, we use phylogenetic data to identify the number of Palawan taxa with sister relationships to populations or species from the Sunda Shelf or oceanic Philippines. Results Although many terrestrial vertebrate taxa are shared between Palawan and the Sunda Shelf, an increasing number of species and populations are now recognized as close relatives of lineages from the oceanic Philippines. Among the 39 putative lineages included in molecular phylogenetic studies with sampling from the Sunda Shelf, Palawan and the oceanic Philippines, 17 of them reveal sister relationships between lineages from Palawan and the oceanic Philippines. Main conclusions Rather than a simple nested subset of Sunda Shelf populations, Palawan is best viewed as having played multiple biogeographic roles, including a young and old extension of the Sunda Shelf, a springboard to diversification in the oceanic Philippines, and a biogeographic component of the Philippine archipelago. Palawan has a long, complex geological history, which may explain this variation in pattern. Huxley originally noted transitional elements in Palawan’s fauna; we therefore suggest that his modification of Wallace’s Line should be recognized as a filter zone, reflecting both his original intent and available taxonomic and molecular evidence.  相似文献   

19.
    
The biology of the gray-sided voleClethrionomys rufocanus in Hokkaido, concerning taxonomy, morphology, phylogeny, distribution, and natural history, is reviewed. Applied issues in forest management (damage, control and census) are also mentioned. AlthoughClethrionomys rufocanus of Hokkaido was originally identified as a distinct species,Evotomys (=nowClethrionomys) bedfordiae Thomas, 1905, current literature generally refers to the gray-sided vole of Hokkaido asClethrionomys rufocanus or asC. rufocanus bedfordiae (vernacular name, the Bedford’s red-backed vole). The gray-sided vole is the most common small mammal in Hokkaido. It inhabits open areas as well as forests, and mainly feeds on green plants. The gray-sided vole has a high reproductive potential; litter size: 4–7; gestation period: 18–19 days; maturation age: 30–60 days old. Although spring-born individuals usually attain sexual maturity in their summer/fall of birth, their maturation is sometimes suppressed under high densities. The breeding season is generally from April to October, but with some regional variation.Clethrionomys rufocanus has a rather specialized diet (folivorous), particularly during winter when it feeds on bamboo grass. Many predators specialize on the grey-sided vole in Hokkaido; even the red fox, which is a typical generalist predator, selectively feeds on this vole. Damage by voles’ eating bark used to be sever on forest plantations in Hokkaido. Censuses of small rodents have been carried out for management purpose since 1954.  相似文献   

20.
    
The Mexican pseudothelphusid crabs are classified in one subfamily, three tribes, and 13 genera. Up to now, 56 species have been recognized, distributed in a strictly Neotropical pattern, with some of them reaching the state of Sonora on the western slope of Mexico. The tribe Pseudothelphusini is the most diverse, with five genera and 35 species, all of them endemic to Mexico: the two most species‐rich genera are Pseudothelphusa, with 23 species, and Tehuana, with eight species; Epithelphusa includes two species, whereas Disparithelphusa and Smalleyus are monotypic. The Pseudothelphusini lack an updated systematic revision, which could serve as a framework to analyse the monophyletic origin of the group, to clarify the relationships among genera and species, as well as to resolve the taxonomic status of various species complexes. In the present study, an exhaustive morphological revision was conducted using somatic and sexual characters. A phylogenetic analysis was performed using 77 characters and 183 character states, taken from 41 species. Ten trees of the same length were obtained using PAUP 4.0 through a heuristic search. The results show that the tribe as it is actually known constitutes a paraphyletic group, in which the species of Epithelphusa and Pseudothelphusa puntarenas are excluded from the internal group. According to the obtained results, the tribe Pseudothelphusini s.s. includes five genera: Smalleyus, Pseudothelphusa, Tehuana, and two new ones to accommodate Pseudothelphusa galloi and Pseudothelphusa sulcifrons, respectively. This new arrangement considers the provisional suppression of the genus Disparithelphusa, which remained as another species of Pseudothelphusa throughout the cladistic analysis. The phylogenetic results show a strong congruence with the distribution of the species, in several cases grouping species that form morphological clines along a geographical gradient. The previously proposed southern origin of the tribe Pseudothelphusini gains support with the results obtained. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 457–481  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号