首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
There is growing evidence from both behavioral and neurophysiological approaches that primates are able to rapidly discriminate visually between snakes and innocuous stimuli. Recent behavioral evidence suggests that primates are also able to discriminate the level of threat posed by snakes, by responding more intensely to a snake model poised to strike than to snake models in coiled or sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the potential for an underlying neurological basis for this ability. Previous research indicated that the pulvinar is highly sensitive to snake images. We thus recorded pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed photos of snakes in striking and non-striking postures in a delayed non-matching to sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons were tested with the all snake images. We found that pulvinar neurons in the medial and dorsolateral pulvinar responded more strongly to snakes in threat displays poised to strike than snakes in non-threat-displaying postures with no significant difference in response latencies. A multidimensional scaling analysis of the 78 visually responsive neurons indicated that threat-displaying and non-threat-displaying snakes were separated into two different clusters in the first epoch of 50 ms after stimulus onset, suggesting bottom-up visual information processing. These results indicate that pulvinar neurons in primates discriminate between poised to strike from those in non-threat-displaying postures. This neuronal ability likely facilitates behavioral discrimination and has clear adaptive value. Our results are thus consistent with the Snake Detection Theory, which posits that snakes were instrumental in the evolution of primate visual systems.  相似文献   

2.
Wild bonnet macaques (Macaca radiata) were studied in southern India to assess their ability to discriminate non‐venomous, venomous and predatory snakes. Realistic snake models were presented to eight troops of bonnet macaques at feeding stations and their behavior was video‐recorded 3 min before and 3 min after snake exposure. Snakes presented were: (1) venomous Indian cobra (Naja naja) displaying an open hood with ‘eyespots’; (2) venomous common Indian krait (Bungarus caeruleus); (3) non‐venomous green keelback (Macropisthodan plumbicolor); (4) non‐venomous rat snake (Ptyas mucosus); and (5) Indian python (Python molurus) which preys on macaques. Latencies to detect and react to the snakes were evaluated to determine initial responsiveness. Longer‐term assessment was measured as the percentage of time individuals looked at the snakes and monitored the activity of nearby individuals before and after snake detection. All snake models engendered caution and maintenance of a safe distance. Alarm calling occurred only during python presentations. The cobra engendered a startle response or running in the largest percentage of individuals after its detection, whereas the rat snake and python elicited bipedal standing or ambulating to monitor the snakes. We also examined the influence of age on snake recognition. Juveniles and subadults looked at the cobra, krait, and python for a larger percentage of time than adults did; albeit, adults looked at the python substantially longer than at the other snakes. Age differences in behavior suggest that, with the exception of the python, repeated experience with snakes in the wild moderates excitability, consistent with the likely threat of envenomation.  相似文献   

3.
Many prey species detect chemical cues from predators and modify their behaviours in ways that reduce their risk of predation. Theory predicts that prey should modify their anti-predator responses according to the degree of threat posed by the predator. That is, prey should show the strongest responses to chemicals of highly dangerous prey, but should ignore or respond weakly to chemicals from non-dangerous predators. However, if anti-predator behaviours are not costly, and predators are rarely encountered, prey may exhibit generalised antipredator behaviours to dangerous and non-dangerous predators. In Australia, most elapid snakes eat lizards, and are therefore potentially dangerous to lizard prey. Recently, we found that the nocturnal velvet gecko Oedura lesueurii responds to chemicals from dangerous and non-dangerous elapid snakes, suggesting that it displays gen-eralised anti-predator behaviours to chemicals from elapid snakes. To explore the generality of this result, we videotaped the be-haviour of velvet geckos in the presence of chemical cues from two small elapid snakes that rarely consume geckos: the nocturnal golden-crowned snake Cacophis squamulosus and the diurnal marsh snake Hemiaspis signata. We also videotaped geckos in tri-als involving unsceted cards (controls) and cologne-scented cards (pungency controls). In trials involving Cacophis and Hemi-aspis chemicals, 50% and 63% of geckos spent long time periods (> 3 min) freezing whilst pressed flat against the substrate, re-spectively. Over half the geckos tested exhibited anti-predator behaviours (tail waving, tail vibration, running) in response to Ca-cophis (67%) or Hemiaspis (63%) chemicals. These behaviours were not observed in control or pungency control trials. Our re-sults support the idea that the velvet gecko displays generalised anti-predator responses to chemical cues from elapid snakes. Generalised responses to predator chemicals may be common in prey species that co-occur with multiple, ecologically similar, dangerous predators.  相似文献   

4.
Animals are exposed to different predators over their lifespan. This raises the question of whether exposure to predation risk in an early life stage affects the response to predators in subsequent life stages. In this study, we used wood frogs (Rana sylvatica) to test whether exposure to cues indicating predation risk from dragonfly larvae during the wood frog larval stage affected post‐metamorphic activity level and avoidance of garter snake chemical cues. Dragonfly larvae prey upon wood frogs only during the larval stage, whereas garter snakes prey upon wood frogs during both the larval stage and the post‐metamorphic stage. Exposure to predation risk from dragonflies during the larval stage caused post‐metamorphic wood frog juveniles to have greater terrestrial activity than juvenile wood frogs that were not exposed to larval‐stage predation risk from dragonflies. However, exposure to predation risk as larvae did not affect juvenile wood frog responses to chemical cues from garter snakes. Wood frogs exposed as larvae to predation risk from dragonfly larvae avoided garter snake chemical cues to the same extent as wood frog larvae not exposed to predation risk from dragonfly larvae. Our results demonstrate that while some general behaviors exhibit carry‐over effects from earlier life stages, behavioral responses to predators may remain independent of conditions experienced in earlier life stages.  相似文献   

5.
Masataka N  Hayakawa S  Kawai N 《PloS one》2010,5(11):e15122
Humans as well as some nonhuman primates have an evolved predisposition to associate snakes with fear by detecting their presence as fear-relevant stimuli more rapidly than fear-irrelevant ones. In the present experiment, a total of 74 of 3- to 4-year-old children and adults were asked to find a single target black-and-white photo of a snake among an array of eight black-and-white photos of flowers as distracters. As target stimuli, we prepared two groups of snake photos, one in which a typical striking posture was displayed by a snake and the other in which a resting snake was shown. When reaction time to find the snake photo was compared between these two types of the stimuli, its mean value was found to be significantly smaller for the photos of snakes displaying striking posture than for the photos of resting snakes in both the adults and children. These findings suggest the possibility that the human perceptual bias for snakes per se could be differentiated according to the difference of the degree to which their presence acts as a fear-relevant stimulus.  相似文献   

6.
A crucial problem for most animals is how to deal with multiple types of predator, which differ in their sensory capabilities and methods of prey detection. For animals capable of rapid colour change, one potential strategy is to change their appearance in relation to the threat posed by different predators. Here, we show that the dwarf chameleon, Bradypodion taeniabronchum, exhibits different colour responses to two predators that differ in their visual capabilities. Using a model of animal colour perception to gain a 'predator's eye view', we show that chameleons showed better background colour matching in response to birds than snakes, yet they appear significantly more camouflaged to the snake visual system because snakes have poorer colour discrimination.  相似文献   

7.
Many species approach, inspect and signal towards their predators. These behaviours are often interpreted as predator-deterrent signals-honest signals that indicate to a predator that continued hunting is likely to be futile. However, many of these putative predator-deterrent signals are given when no predator is present, and it remains unclear if and why such signals deter predators. We examined the effects of one such signal, the tail-flag display of California ground squirrels, which is frequently given both during and outside direct encounters with northern Pacific rattlesnakes. We video-recorded and quantified the ambush foraging responses of rattlesnakes to tail-flagging displays from ground squirrels. We found that tail-flagging deterred snakes from striking squirrels, most likely by advertising squirrel vigilance (i.e. readiness to dodge a snake strike). We also found that tail-flagging by adult squirrels increased the likelihood that snakes would leave their ambush site, apparently by elevating the vigilance of nearby squirrels which reduces the profitability of the ambush site. Our results provide some of the first empirical evidence of the mechanisms by which a prey display, although frequently given in the absence of a predator, may still deter predators during encounters.  相似文献   

8.
Antipredator behaviours and the ability to appropriately assess predation risk contribute to increased fitness. Predator avoidance can be costly; however, so we expect prey to most strongly avoid predators that pose the greatest risk (i.e., prey should show threat sensitivity). For invasive species, effectively assessing the relative risk posed by predators in the new environment may help them establish in new environments. We examined the antipredator behaviour of introduced Asian house geckos, Hemidactylus frenatus (Schlegel), by determining if they avoided shelters scented with the chemical cues of native predatory snakes (spotted pythons, Antaresia maculosa [Peters]; brown tree snakes, Boiga irregularis [Merrem]; common tree snakes, Dendrelaphis punctulata [Grey]; and carpet pythons, Morelia spilota [Lacépède]). We also tested if Asian house geckos collected from vegetation vs. anthropogenic substrates (buildings) responded differently to the chemical cues of predatory snakes. Asian house geckos did not show a generalised antipredator response, that is, they did not respond to the chemical cues of all snakes in the same way. Asian house geckos avoided the chemical cues of carpet pythons more strongly than those of other snake species, providing some support for the threat‐sensitivity hypothesis. There was no difference in the antipredator behaviour of Asian house geckos collected from buildings vs. natural vegetation, suggesting that individuals that have invaded natural habitats have not changed their antipredator behaviour compared to urban individuals. Overall, we found some evidence indicating Asian house geckos are threat‐sensitive to some Australian predacious snakes.  相似文献   

9.
Anti-predatory strategies of birds are diverse and may include predator-specific alarm calls. For example, oriental tit (Parus minor) parents can distinguish snakes from other predators and produce snake-specific referential vocalizations ("jar" call) when a snake poses a threat to their nest. The “jar” call has a very specific function to induce fledging of nestlings close to fledging age. This reaction ensures nestlings' survival in natural encounters with snakes that are capable of entering nest cavities and kill entire broods. Sciurid rodents, like chipmunks, may pose a similar threat to cavity-nesting birds. We explored the hypothesis that parents use the fledging-inducing alarm vocalizations in this situation, because chipmunks, like snakes, can kill the brood upon entering the nest cavity. We compared alarm calls of parents toward two predators (chipmunk and snake) who pose a similar threat to the nestlings in a nest cavity, and toward an avian predator (Eurasian jay) who cannot enter nest cavities and poses no threat to the nestlings in a nest. Our results show that the vocal responses of oriental tits were different among the three predators. This suggests that the acoustic properties of vocal responses to predators are different between predators of a similar hunting strategy (nest-cavity entering). The playback of recorded vocal responses of parents to chipmunks did not trigger the fledging of old nestlings, whereas the vocalizations toward a snake did, as shown by earlier studies. Our study suggests that the vocal response of parents does not carry information about the ability of predators to enter the nest cavity and confirms the special status of alarm calls triggered by snakes.  相似文献   

10.
The ability to use multiple cues in assessing predation risk is especially important to prey animals exposed to multiple predators. Wall lizards, Podarcis muralis, respond to predatory attacks from birds in the open by hiding inside rock crevices, where they may encounter saurophagous ambush smooth snakes. Lizards should avoid refuges with these snakes, but in refuges lizards can also find non‐saurophagous viperine snakes, which lizards do not need to avoid. We investigated in the laboratory whether wall lizards used different predator cues to detect and discriminate between snake species within refuges. We simulated predatory attacks in the open to lizards, and compared their refuge use, and the variation in the responses after a repeated attack, between predator‐free refuges and refuges containing visual, chemical, or visual and chemical cues of saurophagous or non‐saurophagous snakes. Time to enter a refuge was not influenced by potential risk inside the refuge. In contrast, in a successive second attack, lizards sought cover faster and tended to increase time spent hidden in the refuge. This suggests a case of predator facilitation because persistent predators in the open may force lizards to hide faster and for longer in hazardous refuges. However, after hiding, lizards spent less time in refuges with both chemical and visual cues of snakes, or with chemical cues alone, than in predator‐free refuges or in refuges with snake visual cues alone, but there were no differences in response to the two snake species. Therefore, lizards could be overestimating predation risk inside refuges. We discuss which selection pressures might explain this lack of discrimination of predatory from similar non‐predatory snakes.  相似文献   

11.
1. The interface between thermal biology and foraging mode has attracted little scientific attention, but may be crucially important to the biology of ectothermic predators. Slip & Shine (1988c) suggested that the ability of large heavy-bodied snakes to ambush nocturnally active mammals relied on the snakes' control of cooling rates through their thermal inertia (via body size and postural adjustments) and microhabitat selection.
2. We tested assumptions underlying this hypothesis, using Diamond Pythons ( Morelia s . spilota ) from southeastern New South Wales. Our laboratory studies confirmed that larger body sizes and coiled postures significantly retarded cooling rates, and that body temperature affected the snakes' ability to detect potential prey items.
3. The magnitude of these effects on cooling rates was great enough to extend the time period substantially over which an adult Diamond Python, lying in ambush in a suitable microhabitat, would be able to detect and capture nocturnally active prey. For example, the times taken for pythons to reach thermal equilibration under our experimental conditions (cooling from 33 to 12°C) were <1h for hatchling pythons regardless of posture, 1 h for outstretched juveniles, 2 h for coiled juveniles and outstretched adults, and almost 8 h for coiled adults.
4. The high rates of cooling of juvenile pythons, even when they are tightly coiled, may force them to rely upon diurnally active prey rather than crepuscular or nocturnal species.  相似文献   

12.
Derived large-mouthed snakes (macrostomatans) possess numerous specializations in their skull and lower jaws that allow them to consume large vertebrate prey. In contrast, basal snakes lack these adaptations and feed primarily on small prey items. The sequence of osteological and behavioral modifications involved in the evolution of the macrostomatan condition has remained an open question because of disagreement about the origin and interrelationships of snakes, the paucity of well-preserved early snake fossils on many continental landmasses, and the lack of information about the feeding ecology of early snakes. We report on a partial skeleton of a new 3.5-m-long snake, Sanajeh indicus gen. et sp. nov., recovered from Upper Cretaceous rocks of western India. S. indicus was fossilized in association with a sauropod dinosaur egg clutch, coiled around an egg and adjacent to the remains of a ca. 0.5-m-long hatchling. Multiple snake-egg associations at the site strongly suggest that S. indicus frequented nesting grounds and preyed on hatchling sauropods. We interpret this pattern as “ethofossil” preservation of feeding behavior. S. indicus lacks specializations of modern egg-eaters and of macrostomatans, and skull and vertebral synapomorphies place it in an intermediate position in snake phylogeny. Sanajeh and its large-bodied madtsoiid sister taxa Yurlunggur camfieldensis and Wonambi naracoortensis from the Neogene of Australia show specializations for intraoral prey transport but lack the adaptations for wide gape that characterize living macrostomatan snakes. The Dholi Dungri fossils are the second definitive association between sauropod eggs and embryonic or hatchling remains. New fossils from western India provide direct evidence of feeding ecology in a Mesozoic snake and demonstrate predation risks for hatchling sauropod dinosaurs. Our results suggest that large body size and jaw mobility afforded some non-macrostomatan snakes a greater diversity of prey items than previously suspected on the basis of extant basal snakes.  相似文献   

13.
《Animal behaviour》1986,34(3):804-814
Two experiments examined the responses of red spitting cobras (Naja mossambica pallida) to stimulus properties of rodent prey. In experiment 1 cobras exhibited elevated rates of tongue flicking (RTF) and trail-following behaviour after striking mice and after 15-s presentations of visual-chemical-thermal cues arising from mice held just out of striking range. Disturbance with a clean snake hook did not produce similar effects. In experiment 2 these cobras were compared with prairie rattlesnakes (Crotalus v. viridis). All snakes were exposed to five stimulus conditions in their home cages: (1) 3 s of disturbance (D) with a clean snake hook; (2) 15 s of D; (3) 3 s inspection of a live mouse held out of striking range (NS); (4) 15 s of NS; and (5) a presentation of a live mouse inside striking range (S). The snakes always struck in the latter condition, usually within 3 s. Rattlesnakes exhibited elevated RTF only after S, whereas cobras did so after 15 s of both NS and S. The performance of rattlesnakes was consistent with the assumption that these animals are ambushers; that of cobras was consistent with the assumption that these animals are active hunters which will chase and catch visually detected prey.  相似文献   

14.
Corallus grenadensis is an arboreal boa endemic to the Grenada Bank. Thirty-five encounters with boas resulted in 17.65 hours of observations, including 6.3 hours of video-tape (which included two acts of predation). Boas under 100 cm are largely active foragers that move slowly through bushes and trees and tongue-flick leaf and branch surfaces apparently seeking chemosensory evidence of nocturnally quiescent lizard (Anolis) prey. Significantly more search time was directed to branches below the snake rather than to either the branches supporting the snake or to those above the snake, and tongue-flick rates were significantly higher for moving snakes than for those that were stationary. Smaller snakes prey on nocturnally quiescent lizards and they spent more time moving than did large snakes that feed on nocturnally active rodents and often employ an ambush foraging strategy. Once visual and, presumably, thermal information was received from a sleeping anole, C. grenadensis adopted a lengthy stalking process devoid of tongue-flicks. Snakes approached inactive lizards from adjacent branches with great stealth, moving at a rate of about 1 cm/min. The strike was made from close range (within 3 cm), and the prey was never released once contact was made. We conclude that, if chemosensory cues successfully lead a treeboa to a visual encounter with a sleeping lizard, subsequent behavior ensures a high rate of predation success.  相似文献   

15.
Ectotherm vertebrates show physiological mechanisms that reduce metabolic costs during prolonged fasting. Once feeding, these animals adopt a wide variety of metabolic responses such as changes in gastrointestinal organ masses. Up-regulatory responses after feeding have been widely explored in infrequently feeding snakes like pythons, whereas few studies have been devoted to frequently feeding snakes. In this study, we have considered the gastrointestinal responses after feeding in a frequent feeder, the viperine snake Natrix maura, in the Ebro Delta rice fields. In this habitat, viperine snakes are exposed to long periods of food deprivation due to the lack of available prey as a consequence of the man-induced rice cycle. We weighed prey items and full gut masses, and measured length of combined esophagus and stomach, and intestine of viperine snakes belonging to a wide range of sizes. Snakes concentrate foraging activity when rice fields were flooded. In this period, gut masses increased. Likewise, intestines increased in length during the feeding period, which suggests that viperine snakes probably experience a postfeeding hypertrophy of their small intestines that contributes to their larger length. Once the intestine length was corrected for the snake size, it was shown that adults present longer intestines than immature snakes, reflecting an increase in the posterior part of the body linked to the gonads development. This study contributes to explore the physiological responses to feeding in frequently feeding snakes modelled by abrupt shifts of food availability.  相似文献   

16.
In a system with multiple predators, the threat‐sensitive predator avoidance hypothesis predicts that prey respond differently to predators relative to the risks each poses (e.g., degree of dietary specialization). Aquatic animals often rely heavily on detecting predators via chemical cues (kairomones) and respond with a suite of behaviors including detection and avoidance. However, little is known about how animals respond to kairomones of specialist versus generalist predators. In laboratory experiments, we compared behavioral responses of a poorly studied aquatic salamander, the greater siren (Siren lacertina), to cues from specialist and generalist predator snakes to evaluate threat‐sensitive responses. Sirens exhibited a novel behavior (gill‐flushing) most often in the presence of specialist predator cues. Avoidance behavior (reversing direction following cue detection) was higher in response to specialist predator and novel animal control cues and lowest in response to generalist predator cues. An intermediate response to the animal control, an unfamiliar amphibian predator, indicated that sirens respond cautiously to a novel cue. The gradient of observed responses to different snake cues indicates that sirens may be evaluating predation potential of animals based on their foraging specificity and familiarity.  相似文献   

17.
The predator–prey space game and the costs associated with risk effects are affected by prey 1) proactive adjustments (when prey modify their behaviour in response to an a priori assessment of the risk level) and 2) reactive adjustments (when prey have detected an immediate threat). Proactive adjustments are generally well‐studied, whereas the frequency, strength and duration of reactive adjustments remain largely unknown. We studied the space use and habitat selection of GPS‐collared zebras Equus quagga from 2 to 48 h after an encounter with lions Panthera leo. Lion–zebra encounters generally occurred close to artificial waterholes (< 1 km). Two hours after an encounter, zebras were more likely to have fled than stay when the encounter occurred in more risky bushy areas. During their flight, zebras selected grasslands more than usual, getting great visibility. Regardless of their initial response, zebras finally fled at the end of the night and reached areas located far from waterholes where encounters with lions are less frequent. The large‐scale flights (~4–5 km) of zebras led to a local zebra depression for lions. Zebras that had fled immediately after the encounter resumed their behaviour of coming close to waterholes on the following day. However, zebras that had initially stayed remained far from waterholes for an extra 24 h, remaining an elusive prey for longer. The delay in the flight decision had different short‐term consequences on the lion–zebra game. We reveal that the spatial context of the encounter shapes the immediate response of prey, and that encountering predators induces strong behavioural responses: prey flee towards distant, safer, areas and have a constrained use of key resource areas which are at the heart of the predator–prey game at larger spatio‐temporal scales. Nighttime encounters were infrequent (once every 35 days on average), zebra responses were short‐lived (< 36 h) but occurred over a large spatial scale (several km).  相似文献   

18.
Prey often avoid predator chemical cues, and in aquatic systems, prey may even appraise predation risk via cues associated with the predator's diet. However, this relationship has not been shown for terrestrial predator-prey systems, where the proximity of predators and prey, and the intensity of predator chemical cues in the environment, may be less than in aquatic systems. In the laboratory, we tested behavioural responses (avoidance, habituation and activity) of terrestrial red-backed salamanders, Plethodon cinereus, to chemical cues from garter snakes, Thamnophis sirtalis, fed either red-backed salamanders or earthworms (Lumbricus spp.). We placed salamanders in arenas lined with paper towels pretreated with snake chemicals, and monitored salamander movements during 120 min. Salamanders avoided substrates preconditioned by earthworm-fed (avoidanceX+/-SE=91.1+/-2.5%, N=25) and salamander-fed (95.2+/-2.5%, N=25) snakes, when tested against untreated substrate (control). Salamanders avoided cues from salamander-fed snakes more strongly (75.2+/-5.5%, N=25) than earthworm-fed snakes when subjected to both treatments simultaneously, implying that salamanders were sensitive to predator diet. Salamanders tended to avoid snake substrate more strongly during the last 60 min of a trial, but activity patterns were similar between salamanders exposed exclusively to control substrate versus those subject to snake cues. In another experiment, salamanders failed to avoid cues from dead conspecifics, suggesting that the stronger avoidance of salamander-fed snakes in the previous experiment was not directly due to chemical cues emitted by predator-killed salamanders. Salamanders also did not discriminate between cues from a salamander-fed snake versus a salamander-fed snake that was recently switched (i.e. <14 days) to an earthworm diet. Our results imply that terrestrial salamanders are sensitive to perceived predation risk via by-products of predator diet, and that snake predators rather than dead salamanders may be largely responsible for the release of such chemicals. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

19.
Rattlesnakes typically strike and release adult rodent prey. Striking is followed by a sustained, high rate of tongue flicking that guides the snake to the envenomated, dead prey. Wild-caught rattlesnakes exhibited this chemosensory searching for about 2.5 h, and the present study demonstrated that long-term captive rattlesnakes (Crotalus atrox, C durissus, C horridus, C vegrandis, C unicolor) at three zoos did the same. Because these zoo-raised snakes had always been offered dead rodents and because the snakes had become accustomed to ingesting them without striking, the present snakes had rarely exercised their innate predatory repertoires. The duration of chemosensory searching in these snakes indicates that this important aspect of the predatory repertoire had not been degraded as a consequence of long-term captive husbandry.  相似文献   

20.
Contextual flexibility in prey restraint behaviour has been documented in advanced snakes (Colubroidea), but the degree of flexibility for earlier snake lineages has been largely unstudied. We document the prey restraint behaviour of five snake species belonging to three early macrostomate lineages: Loxocemidae, Erycinae and Boidae. Species from these lineages were chosen for this study because they utilize similar prey resources but exhibit different ecological habits that may have important consequences on prey restraint behaviour. Snakes (n = 27) were studied in a systematic experimental design assessing the effects of mouse size (small and large) and status (live and dead) across a total of 216 feeding trials. Loxocemus and Erycine snakes were highly flexible in their prey restraint behaviour patterns and these varied across prey category. Individuals of Boa constrictor exhibited very little contextual flexibility in feeding behaviour, confirming earlier reports. Flexibility in prey restraint behaviour corresponded with loop application pattern, whether the snake bent laterally or ventrally when forming a loop around prey. Our study is the first to show that early macrostomate snakes exhibit flexible prey restraint behaviours. Thus, our results suggest that flexibility in predatory behaviour may be more widespread across snake taxa than previously thought and we offer hypotheses for the observed interspecific differences in snake feeding behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号